Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Minimum uncertainty states of angular momentum and angular position

Pegg, D T and Barnett, S M and Zambrini, R and Franke-Arnold, S and Padgett, M (2005) Minimum uncertainty states of angular momentum and angular position. New Journal of Physics, 7. -. ISSN 1367-2630

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The states of linear momentum that satisfy the equality in the Heisenberg uncertainty principle for position and momentum, that is the intelligent states, are also the states that minimize the uncertainty product for position and momentum. The corresponding uncertainty relation for angular momentum and angular position, however, is more complicated and the intelligent states need not be the constrained minimum uncertainty product states. In this paper, we investigate the differences between the intelligent and the constrained minimum uncertainty product states for the angular case by means of instructive approximations, a numerical iterative search and the exact solution. We find that these differences can be quite significant for particular values of angular position uncertainty and indeed may be amenable to experimental measurement with the present technology.