Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

On the response of an oscillatory medium to defect generation

Zhao, H and Friedrich, R and Ackemann, T (2005) On the response of an oscillatory medium to defect generation. Applied Physics B: Lasers and Optics, 81 (7). pp. 969-973. ISSN 0946-2171

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We investigate the response of a system far from equilibrium close to an oscillatory instability to the induction of phase singularities. We base our investigation on a numerical treatment of the complex Ginzburg-Landau equation (CGLE) in two spatial dimensions, which is considered as an order-parameter equation for lasers and other nonlinear optical systems. Defects are randomly generated by a spatially modulated linear growth rate. In the amplitude-turbulent regime, no qualitative change of behaviour can be detected. Phase-turbulent patterns emerging due to the Benjamin-Feir instability are destroyed by the externally injected defects. One observes either states consisting of spiral structures of various sizes which resemble the vortex glass states of the unperturbed system or a travelling wave pattern containing moving topological defects. In parameter space, both states are separated by a well-defined phase boundary which is close to the line separating convectively from absolutely stable travelling waves.