Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Electromagnetic field quantization in absorbing dielectrics

MATLOOB, R and LOUDON, R and BARNETT, S M and JEFFERS, J (1995) Electromagnetic field quantization in absorbing dielectrics. Physical Review A, 52 (6). pp. 4823-4838. ISSN 1050-2947

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The electromagnetic field is quantized in dielectric media that show both loss and dispersion. The complex dielectric function of the medium is assumed to be a known function and the loss is modeled by Langevin forces in the forms of noise current operators. The noise current correlation function is related to the assumed dielectric function by the fluctuation-dissipation theorem. Field quantization is carried out for the infinite homogeneous dielectric, the semi-infinite dielectric, and the dielectric slab, where the fields in the second and third cases are restricted to propagation perpendicular to the dielectric surfaces. The forms of the vector potential operator are obtained in the different spatial regions for all three geometries, and in each case the required canonical commutation relation for the vector potential and its conjugate generalized momentum operator is verified. The spatial dependence of the vacuum field fluctuations is calculated for the two dielectric geometries that have surfaces.

Item type: Article
ID code: 31017
Keywords: quantum optics, spontaneous emissions, response functions, finite geometries, electrodynamics, conductors, dispersion, Optics. Light
Subjects: Science > Physics > Optics. Light
Department: Faculty of Science > Physics
Related URLs:
    Depositing user: Pure Administrator
    Date Deposited: 20 Jun 2011 16:40
    Last modified: 07 Dec 2013 01:02
    URI: http://strathprints.strath.ac.uk/id/eprint/31017

    Actions (login required)

    View Item