Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Electromagnetic field quantization in absorbing dielectrics

MATLOOB, R and LOUDON, R and BARNETT, S M and JEFFERS, J (1995) Electromagnetic field quantization in absorbing dielectrics. Physical Review A, 52 (6). pp. 4823-4838. ISSN 1094-1622

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The electromagnetic field is quantized in dielectric media that show both loss and dispersion. The complex dielectric function of the medium is assumed to be a known function and the loss is modeled by Langevin forces in the forms of noise current operators. The noise current correlation function is related to the assumed dielectric function by the fluctuation-dissipation theorem. Field quantization is carried out for the infinite homogeneous dielectric, the semi-infinite dielectric, and the dielectric slab, where the fields in the second and third cases are restricted to propagation perpendicular to the dielectric surfaces. The forms of the vector potential operator are obtained in the different spatial regions for all three geometries, and in each case the required canonical commutation relation for the vector potential and its conjugate generalized momentum operator is verified. The spatial dependence of the vacuum field fluctuations is calculated for the two dielectric geometries that have surfaces.