Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

The effects of anion and cation substitution on the ultrafast solvent dynamics of ionic liquids: A time-resolved optical Kerr-effect spectroscopic study

Giraud, Gerard and Gordon, Charles M. and Dunkin, Ian R. and Wynne, Klaas (2003) The effects of anion and cation substitution on the ultrafast solvent dynamics of ionic liquids: A time-resolved optical Kerr-effect spectroscopic study. Journal of Chemical Physics, 119 (1). pp. 464-477. ISSN 0021-9606

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Ultrafast solvent dynamics of room-temperature ionic liquids have been investigated by optical heterodyne-detected Raman-induced Kerr-effect spectroscopy ~OHD-RIKES! by studying the effects of cation and anion substitution on the low frequency librational modes. The spectra of two series of imidazolium salts are presented. The first series is based on the 1-butyl-3-methylimidazolium salts @bmim#1 containing the anions trifluoromethanesulfate @TfO#2, bis~trifluoromethanesulfonyl!imide @Tf2N#2, and hexafluorophosphate @PF6#2. The second series is based on @Tf2N#2 salts containing the three cations 1-butyl-2,3-dimethylimidazolium @bmmim#1, 1-methyl-3-octylimidazolium @omim#1, and @bmim#1. It is found in all five samples that the signal is due to libration of the imidazolium ring at three frequencies around 30, 65, and 100 cm21 corresponding to three local configurations of the anion with respect to the cation.