Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Equilibrium behaviour of a novel gas separation process, with application to carbon capture

Sweatman, Martin B. (2010) Equilibrium behaviour of a novel gas separation process, with application to carbon capture. Chemical Engineering Science, 65 (13). pp. 3907-3913. ISSN 0009-2509

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A novel gas separation process is described and analysed in the context of carbon capture. It involves a highly selective absorbent fluid below its saturation pressure pre-mixed with the gas to be separated and absorbed in to a porous solid. This fluid mixture simultaneously forms gas-like and liquid-like regions within the porous solid depending on the pore size. The gas component to be separated is process is used to recover the absorbed gas. This work examines the equilibrium behaviour of this process in the context of carbon capture using the density functional theory (DFT) of classical fluids. The DFT model employed represents the porous solid in terms of ideal graphite slit-pores, and a ternary fluid model is calibrated to represent mixtures of tetrahydrofuran (the absorbent fluid), carbon dioxide and nitrogen. Under the conditions investigated here we find that the equilibrium behaviour of this system is superior to the analogous pressure-swing adsorption process without solvent. This result motivates further experimental and dynamical process modelling studies of this system. (C) 2010 Elsevier Ltd. All rights reserved.