Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Analysis of bistability conditions between lasing and nonlasing states for a vertical-cavity surface-emitting laser with frequency-selective optical feedback using an envelope approximation

Naumenko, A. V. and Loiko, N. A. and Ackemann, T. (2007) Analysis of bistability conditions between lasing and nonlasing states for a vertical-cavity surface-emitting laser with frequency-selective optical feedback using an envelope approximation. Physical Review A, 76 (2). -. ISSN 1094-1622

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The emission characteristics of a vertical-cavity surface-emitting laser (VCSEL) coupled to an external cavity with a diffraction grating as a frequency-selective element are theoretically analyzed. We introduce envelope functions for the set of external-cavity modes based on the loci of modes with extremal gain or frequency in the proper parameter space. Replacing the set of discrete stationary solutions by these envelope functions, simple analytical expressions are derived for the existence of bistability between a lasing state strongly affected by the feedback and a state close to the solitary laser emission (in particular the nonlasing state) and for the frequency of the VCSEL in the grating-controlled regime. It is shown how the initial jump of the laser intensity during abrupt turn-on can be maximized. By a control of the feedback change, the width of the hysteresis loop can be increased significantly. The scheme under consideration can be useful in all-optical photonic switching applications.