Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The properties of 5-HT3 receptors in clonal cell lines studied by patch-clamp techniques

Lambert, J J and Peters, J A and Hales, T G and Dempster, J (1989) The properties of 5-HT3 receptors in clonal cell lines studied by patch-clamp techniques. British Journal of Pharmacology, 97 (1). pp. 27-40. ISSN 0007-1188

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The characteristics of transmembrane currents evoked by 5-hydroxytryptamine (5-HT) in the neuroblastoma x Chinese hamster brain cell line NCB-20 and neuroblastoma clonal cell line N1E-115 have been studied under voltage-clamp conditions by the whole-cell recording and outside-out membrane patch modes of the patch-clamp technique. In 73% of NCB-20 cells examined (n = 221), and all N1E-115 cells studied (n = 80), 5-HT (10 microM) elicited a transient inward current at negative holding potentials, this being associated with an increase in membrane conductance. In both cell lines responses to 5-HT reversed in sign at a potential of approximately -2 mV and demonstrated inward rectification. 3 The reversal potential of 5-HT-induced currents (E5-HT) recorded from either NCB-20 or N1E-115 cells was unaffected by total replacement of internal K+ by Cs+. In N1E-115 cells, reducing internal K+ concentration from 140 to 20 mM produced a positive shift in E5-HT of approximately 28 mV, whereas reducing external Na+ from 143 to 20 mM was associated with a negative shift in E5-HT of about 37 mV. A large reduction in internal Cl- concentration (from 144 to 6 mM) had little effect on E5-HT. 4 5-HT-induced currents of NCB-20 cells were unaffected by methysergide (1 microM) or ketanserin (1 microM), but were reversibly antagonized by GR38032F (0.1-1.0 nM) with an IC50 of 0.25 nM. GR 38032F (0.3 nM) reduced 5-HT-induced currents in N1E-115 cells to approximately 26% of their control value. 5 On outside-out membrane patches excised from both NCB-20 and N1E-115 cells, 5-HT induced small inward currents which could not be clearly resolved into discrete single channel events. Such responses were: (i) reversibly antagonized by GR 38032F (1 nM) (ii) reversed in sign at 0 mV, and (iii) subject to desensitization. 6 Fluctuation analysis of inward currents evoked by 5-HT (1 microM) in N1E-115 cells suggests that 5-HT gates a channel with a conductance of approximately 310fS. Such a relatively small conductance could readily explain why the response of outside-out membrane patches to 5-HT cannot at present be resolved into clear single channel events.