Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

A revised model for the secretion of tPA and cytokines from cultured endothelial cells

Knipe, Laura and Meli, Athinoula and Hewlett, Lindsay and Bierings, Ruben and Dempster, John and Skehel, Paul and Hannah, Matthew J and Carter, Tom (2010) A revised model for the secretion of tPA and cytokines from cultured endothelial cells. Blood, 116 (12). pp. 2183-2191. ISSN 0006-4971

Full text not available in this repository. (Request a copy from the Strathclyde author)


Endothelial cells are reported to contain several distinct populations of regulated secretory organelles, including Weibel-Palade bodies (WPBs), the tissue plasminogen activator (tPA) organelle, and the type-2 chemokine-containing organelle. We show that the tPA and type-2 organelles in human endothelial cells represent a single compartment primarily responsible for unstimulated secretion of tPA or, in cells exposed to interleukin-1β (IL-1β), the cytokines IL-8, IL-6, monocyte chemoattractant protein-1 (MCP-1), and growth-regulated oncogene-α (GRO-α). This compartment was distinct from WPBs in that it lacked detectable von Willebrand factor, P-selectin, Rab27a, or CD63 immunoreactivity, displayed no time-dependent decrease in intragranule pH, underwent detectable unstimulated exocytosis, and was very poorly responsive to Ca(2+)-elevating secretagogues. WPBs could also contain tPA, and in IL-1β-treated cells, IL-8, IL-6, MCP-1, and GRO-α, and were the primary source for histamine or ionomycin-stimulated secretion of these molecules. However, analysis of the storage efficiency of cytokines and tPA revealed that all were very poorly stored compared with von Willebrand factor. The nonmammalian, nonsecretory protein EGFP, when expressed in the secretory pathway, also entered WPBs and had a storage efficiency similar to tPA and the cytokines tested. Based on these data, we proposed a revised model for storage and secretion of cytokines and tPA.