Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


Scanning tunnelling luminescence studies of nitride semiconductor thin films under ambient conditions

Manson-Smith, S.K. and Trager-Cowan, C. and O'Donnell, K.P. (2001) Scanning tunnelling luminescence studies of nitride semiconductor thin films under ambient conditions. Physica Status Solidi B, 228 (2). 445 -448. ISSN 0370-1972

Full text not available in this repository. Request a copy from the Strathclyde author


We have investigated the properties of a commercial light-emitting diode (LED) structure containing an InGaN single quantum well (SQW) by scanning tunneling luminescence (STL). Data was acquired under ambient conditions, i.e., in air and at room temperature, using our unique STL microscope with a novel light collection geometry. Scanning tunneling microscopy (STM) images revealed the presence of hexagonal pits in the structure, with STL images showing strong luminescence from these pits. The variation of STL intensity with bias voltage shows the STL threshold at --2.1 V is numerically similar to the peak position of the SQW luminescence band. A slight shoulder at --2.8V corresponds to the plateau of the delocalised absorption profile, observed in macroscopic measurements. The peak observed at --3.2 V is close to the observed GaN band edge emission.