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Abstract

In this paper a novel global optimisation approach is used to search for potentially interesting solutions for a mission to9
Mars. The approach blends the characteristics of evolutionary algorithms with the systematic search, typical of branching
techniques. Solutions for a roundtrip to Mars, either direct or via Venus, considering long and short stays on Mars or free11
return trajectories are considered, thus providing a comprehensive view of all the opportunities within a wide range of possible
launch dates. Finally, electric propulsion options are investigated including the possibility of using Mars’ Lagrangian points13
for a low cost capture. The proposed global search was effectively able to find globally minimal �v solutions for Earth–Mars
roundtrips giving the expected characterisation of the problem under study. Moreover, it will be shown how the method was15
able to automatically rediscover known solutions along with new ones of practical interest for future Mars exploration.
© 2005 Published by Elsevier Ltd.17

1. Introduction

In recent years the space community has demon-
strated a growing interest in global optimisation tech-21
niques as a viable tool for the design of space tra-
jectories [1–5]. However, most of the global methods23
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used so far can be classified as stochastic or heuris-
tic approaches and in particular the evolutionary strat- 25
egy [6–8] class, which represents only a portion of all
available global methods [9]. In many cases they have 27
proven to explore efficiently the solution space provid-
ing even unexpected optimal solutions or a number of 29
good initial guesses useful for a further optimisation
with more accurate local optimisation techniques. 31

Other classes of global methods like deterministic
ones, such as branching or branch and bounds ap- 33
proaches, have received less attention even though
they have been demonstrated to be extremely effec- 35
tive in many other fields [9–12]. A hybridisation of
both stochastic and deterministic approaches could be 37
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beneficial in the improvement of the effectiveness of1
both at solving space-related problems.

In this paper an analysis of a variety of Earth–Mars3
transfer trajectories has been performed using an inno-
vative global optimisation approach, which combines5
a stochastic and a deterministic method.

The basic idea of this novel approach is to use a lim-7
ited set of potential solutions evolving for a small num-
ber of generations, according to some specific evolu-9
tion strategies (the stochastic step), in subregions of
the solution space defined by a branching procedure11
(the deterministic step). On the other hand, the branch-
ing rules, i.e. the rules used to partition the solutions13
space, are functions of the outcome from the evolution
step. This technique has been used to conduct an exten-15
sive search for families of potentially interesting trans-
fer trajectories from Earth to Mars, and return, in view17
of future exploration and colonisation missions envis-
aged by the Aurora programme [13]. Several types19
of trajectories have been modelled including: multiple
impulsive transfers, low thrust propulsion trajectories21
and indirect transfers, exploiting gravity-assisted ma-
noeuvres or 3rd body dynamics in order to reduce ei-23
ther the transfer time or propellant consumption.

After an introduction of the proposed global optimi-25
sation approach, the paper presents some interesting
results obtained analysing possible viable Earth–Mars27
transfers for the Aurora programme. On the one hand,
these results represent a proof of the effectiveness of29
the methodology, on the other hand, they are a set of
potentially useful solutions for future Mars missions.31

2. General problem formulation

Optimisation problems in trajectory design can be33
formulated, in their general form, as

min f (y)35

bl �C(y)�bu

with y ∈ D, (1)37

where f is a scalar nonlinear function of a multi-
dimensional vector y defined within the domain D.39
The domain D is a hypercube defined by the upper
and lower bounds on the components of the vector y:41

yi ∈ [bl
i , b

u
i ]. (2)

The vector C(y) is formed by all nonlinear con- 43
straint functions of the vector y. If problem (1) is twice
continuously differentiable and presents a single solu- 45
tion, i.e. only one vector y in the domain D minimises f
and satisfies C, a nonlinear programming method like 47
sequential quadratic programming (SQP) can be effi-
ciently used. This means implicitly that the problem 49
must be formulated properly and cannot contain non-
differentiable quantities. However, even in this case the 51
problem may present more than one solution within
the required search space D. 53

If the problem is either non-differentiable, i.e. no
gradient method can be applied, or more than a solu- 55
tion is expected, a global optimisation method must be
considered. The idea is to perform an extensive search 57
of the solution space D looking for possible solutions
to problem (1). In this respect the interest could be 59
more in finding a number of good initial guesses for
the nonlinear programming solver, rather than finding 61
the global optimum with a high level of accuracy.

Among all global methods two categories are 63
here considered: heuristic methods and systematic
methods. 65

Heuristic methods contain all methods that cannot
be proven to find a global optimum with a predictable 67
amount of work. Most stochastic methods are in this
class. For this particular class, it is sometimes possible 69
to prove convergence with probability arbitrarily close
to 1 but with a number arbitrarily large of function 71
evaluations.

Systematic methods contain all methods that (in 73
exact arithmetic) are guaranteed to find the global
optimum with a predictable (deterministic) amount 75
of work. The bound on the amount of work is any-
way quite high: exponential in the problem charac- 77
teristics. The simplest systematic method for bound-
constrained problems is grid search (or enumerative 79
search) where all points on increasingly finer grids are
tested and the best point on each grid is used as a start- 81
ing point for local optimisation. The number of grid
points grows exponentially with the dimensions of the 83
problem and so does the amount of work. Even though
systematic methods are generally more reliable than 85
heuristic ones they need some level of insight into the
problem and the structure of the objective function, 87
to be efficient (an exception can be made for meth-
ods based on interval analysis [14]). If the problem is 89
represented by a black box then they may not find the
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global optimum in a reasonable amount of time. This1
is understandable if we look at the density theorem
[15], which states that any method based only on lo-3
cal information, that converges for every continuous f
to a global minimiser of f in a feasible domain D must5
produce a sequence of points y1, y2, y3, . . . that is
dense in D. A well known stochastic method is repre-7
sented by genetic algorithms (GA) [8] that make use
of analogies to biological evolution by allowing mu-9
tations and crossing over among candidates for good
local optima in the hope to derive even better ones.11
The original concept of genetic algorithms is to en-
code a potential solution (individual) of the problem13
under study, in the form of a binary string in which
each binary number represents a chromosome of the15
“DNA” (or genotype) of the solution (or phenotype).
More sophisticated genetic algorithms make use of the17
data structure of the problem to encode the individual
in the more appropriate way [6]. An improvement in19
standard genetics, used to increase exploration capa-
bilities, is represented by niching-GA [7]. The basic21
concept is that in nature different species can exploit
different niches in the environment. This translates in23
the formation of subpopulations with each subpopu-
lation specialised at a subtask of the problem or ex-25
ploring a subregion. Subpopulations can compete as
in pure GA or cooperate. In general all methods that27
resort to some heuristic ideas derived from biological
evolution can be defined as evolution strategies.29

Among systematic methods there are some that split
the solution domain on the basis of some local in-31
formation. Each time the domain is split, a number
of new branches are created, each branch correspond-33
ing to a further exploration of the solution space and
each subdomain representing a node that can be ex-35
panded and explored further. If the diameter of all the
nodes converges to zero, convergence of the algorithm37
is straightforward.

The proposed optimisation approach is composed39
of a stochastic and a systematic step. The stochastic
step is performed using an evolution strategy and is41
meant to obtain information on the possible presence
of optima in a subdomain Dl⊆D. The systematic step43
is performed through a branching approach and is used
to partition the domain D into subdomains Dl , where45
the presence of an optimum is expected. Each sub-
domain may or may not contain the global optimum47
but the systematic exploration of the subdomains, al-

lows finding a number of optima and eventually the 49
global one. This particular hybridisation can be seen
as a form of forced niching since populations evolving 51
in subregions form different species.

This particular hybridisation is the first difference 53
with respect to usual global techniques. Other pecu-
liarities of this approach rely on the way each individ- 55
ual explores the solution space throughout an environ-
ment perception mechanism that will be presented in 57
the next section. For a comparison with known meth-
ods the interested reader can refer to [16]. 59

3. Evolutionary-branching approach

3.1. Evolution step 61

Each solution y is represented by a string, of length
n, containing in the first m components integer val- 63
ues and in the remaining s components real values.
This particular encoding allows the treatment of prob- 65
lems with a mixed integer-real data structure. A hy-
percube S is associated to each individual y, the hy- 67
percube, enclosing a region of the solution space sur-
rounding the individual, is defined by a set of intervals 69
S = S1xS2 . . . xSn ⊆ Dl , where Si contains the value
of the component yi . The solution space is then ex- 71
plored locally by acquiring information about the land-
scape within each region S and globally using a popu- 73
lation of individuals y with their associated intervals.
Each individual can communicate its findings to the 75
others in order to evolve the entire population towards
a better status. 77

Evolution is governed by four fundamental oper-
ators: mutation, migration, mating and filtering. The 79
mutation operator generates a new individual ran-
domly perturbing an old one. The mating procedure 81
takes two individuals and generates one or two chil-
dren mixing the genotypes of the two parents. Four 83
schemes are used to mate individuals:

Single point crossover exchanges part of the genes 85
between the two parents;

• Arithmetic crossover generates a new individual 87
with an interpolation of the two parents.

• Extrapolation generates a new individual on the 89
side of the best individual between the two par-
ents y1 and y2 at a distance from the best parents 91
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proportional to the vector connecting the two1
parents:

y3 = �(y2 − y1) + y2. (3)3

• Second order extrapolation mating generates a child
using two parents and the child generated with an5
extrapolation mating. If p is the vector difference
between y1 and y3 and f 1, f 2, f 3 are the fitness7
values for the three individuals y1, y2, y3 respec-
tively, then a second order one-dimensional model9
of the fitness function is built and the new child
is generated taking the minimum of the resulting11
parabola (see Fig. 1):

y4 = y1 + p�min, (4)13

fmin = a(y1, y2, y3)�2
min + b(y1, y2, y3)�min

+ f (y1). (5)

The mating operator is also used to prevent crowd-15
ing of more than one principal individual in the basin
of attraction of the same solution: if two or more17
principal individuals are colliding (intersecting their
migration regions) and their reciprocal distance falls19
down below a given threshold, a repelling mechanism
is activated which mates the worse individual (between21
the two colliding) with the boundaries of the subdo-
main Dl : each component of the selected individual23
is blended with the value of the furthest bound, pro-
jecting the individual into a random point within Dl ,25
according to the following relation:

y2
i = �bi + (1 − �)y1

i . (6)27

3.1.1. Environment perception and migrations
Each region S is evaluated using two alternative29

mechanisms: breeding or perception and learning.
Breeding generates a subpopulation and selects the31
best child, if better than the parent. A new region S
is then associated to the child generating a migration33
of the entire subpopulation towards a place where
better resources are expected. For this reason each35
hypercube S is here called migration region. The sub-
population is generated with the following procedure:37
a first child is generated, within S, mutating the par-
ent, then an extrapolation mating is performed. The39
two resulting children and the parent are then used to

Migration 

Region 

Random Child

•

Second order
Interpolation

Extrapolation

Fig. 1. Perception mechanism.

generate a third child using second order extrapolation 41
mating. The procedure is repeated until a number of
children equal to the number of coordinates have been 43
generated (see Fig. 1). This procedure can be seen as a
way for the individual y to perceive or sense locally the 45
environment to obtain clues about where to proceed
with the exploration of the solution space. 47

Learning is performed using two mechanisms: in-
terval analysis and gradient methods. In the first case 49
the inferior value of f within the migration region is
associated to the individual y and perception is then 51
not necessary. In the second case, if the function f is
locally continuous and differentiable a number of SQP 53
steps are taken if perception gives no results and the
migration region shrinks down to a small value. 55

The contraction or expansion of each region S is
regulated through a migration radius � and depends 57
either learning or on the perception mechanism. The
migration radius is defined as the ratio between the 59
value of the distance from the boundary bj of the
migration region of the j th individual and the value 61
of the distance from the corresponding boundary b of
the domain D: 63

�j = b
j
i − y

j
i

bi − y
j
i

. (7)

If none of the children of the subpopulation are better 65
than the parent the radius is reduced according to

�j =
{

max([1e − 8, �ymin]) if �ymin ���j ,

��j if �ymin < ��j ,
(8) 67
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where � has been set to 0.5 and �ymin is the distance1
of the best child y∗, among the ones in the migration
region, from the parent j, normalised with respect to3
the dimensions of the migration region:

�ymin =
√√√√ n∑

i=1

(
y∗
i − y

j
i

S
j
i

)2

, (9)
5

where for individual j and for dimension i, S
j
i is the

difference between the value of the upper bound and of7
the lower bound and the summation is over non-zero
dimensions. Now, if from generation k to generation9
k+1 the differential improvement �f j (the difference
between the function f j at generation k minus f j at11
generation k + 1) increases, then the migration radius
is recomputed according to the prediction:13

�j

k+1 = �j
k� log(e − 1 + j), (10)

where � is equal to 2 in this implementation. For inte-15
ger numbers migration operates in the same way but
the migration regions and migration radius are gener-17
ated and treated differently. In particular if �i min is 1
and � is defined as19

�j

k+2 = min[int(log(2 + j)�f j ),�i min]. (11)

The migration region is therefore contracted differ-21
ently for real and for integer variables allowing a bet-
ter spatial exploration.23

3.1.2. Filtering
Instead of traditional selection mechanisms based25

on fitness here a permanent population of n individu-
als is maintained from one generation to another. Each27
individual has a chance to survive provided that it re-
mains inside the filter. The filter ranks all the individu-29
als on the basis of their fitness from best to worst. All
the individuals with a fitness worse than a given thresh-31
old are either hibernated (i.e. no operator is applied) or
mutated while migration is applied to all individuals33
within the filter. The probability of being mutated or
hibernated depends on their ranking. This allows each35
of the individuals within the filter to evolve towards a
different local optimum. Mating is operated between37
all the individuals who present an improvement after
mutation or migration and all the remaining ones.

3.2. Branching step 39

Even though the filter increases the chances of find-
ing several optima and eventually the global one, con- 41
vergence is not guaranteed due to the stochastic nature
of the process. Therefore, a systematic step is taken on 43
the basis of the output of the evolutionary algorithm.
The initial domain D0 ≡ D is partitioned generating 45
a number of subdomains Dl . Each subdomain is then
qualified and explored further according to its qualifi- 47
cation.

The partitioning, or branching, process begins by 49
taking the worst individual, which is out of the filter,
and cutting D0 into L subdomains, corresponding to L 51
potentially new branches (or nodes). Each one of the
L nodes may or may not contain an individual coming 53
from the previous step of evolution and the volume of
the node depends on the position of the cutting point 55
(a safeguard mechanism prevents cuts too close to a
boundary moving the cutting point to the middle of 57
the interval). For each node Dl the ratio between the
relative number of individuals and the relative volume 59
is computed and the resulting quantity defines how
necessary a further exploration of the node is 61

�Dl
=
∑

Dl
j∑

D j

/
n

√
VDl

VD

, l = 1, . . . , L, (12)

where the volumes VDl
and VD are computed taking 63

only edges with a non-zero dimension. This quantity
is then added to a fitness �Dl

defined as 65

�Dl
=
{ 1

J

∑J
j=1 fj −fbest

fworst−fbest
if J �= 0,

1 otherwise,
(13)

where J is the number of individuals in domain Dl . If 67
interval analysis is available each subregion is evalu-
ated taking the inferior and superior values, the quan- 69
tity �Dl

is then defined as

�Dl
= inf

Dl

(f ). (14) 71

The node is then qualified by the quantity:

	Dl
= 
�Dl

+ (1 − 
)�Dl
, (15) 73

where 
 is the weighting factor that weights how reli-
able the result coming from the evolution step is con- 75
sidered. If 
 is 0, only the nodes with low fitness are
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explored because the evolutionary algorithm is con-1
sidered reliable enough to explore exhaustively the
domain D without leaving any region unexplored. On3
the other hand, if 
 is 1 the result from the evolution-
ary algorithm is considered to be not reliable due to a5
premature convergence or to a poor exploration of the
solution space. Now every time a node Dl is subdi-7
vided into other Q subnodes only the most promising
pair is taken into account. If 	Dl

is used to select the9
most promising ones among all L subdomains, the best
pair out of the Q subnodes generated for each subdo-11
mains is selected using the following slightly different
quantity:13

	̃Dq
= 


∑
Dq

j∑
Dl

j

/
�q + (1 − 
)�Dq

,

q = 1, . . . , Q, (16)

where �q is, for each of the subnodes q, the ratio be-15
tween the length of the edge along which the sub-
domain Dl is cut and the corresponding edge of Dq .17
Once a Dq is selected the other subnode of the pair
will be the complement Dq+1 = Dl − Dq . For a fast19
search only nodes presenting a high fitness and large
volume are explored further.21

In order to avoid the rediscovery of minima already
found, the original domain is partitioned using more23
than one individual. If the worst individual is useful
to determine an upper bound on the objective func-25
tion, converged individuals suggest where a further
exploration is unnecessary. Therefore, in the general27
scheme, all converged individuals are ranked depend-
ing on the value of their fitness function. The principal29
cut is then, as stated above, performed using coordi-
nates of the worst individual, the second cut takes the31
worst converged individual and so on up to the best
converged individual.33

3.3. Constraint satisfaction

The algorithm described solves bound-constrained35
problems but since in most of the cases constraints
are nonlinear an extension of the algorithm has been37
developed that takes into account nonlinear inequality
constraints.39

At each evolution step the population of solutions
is divided into two subpopulations and a different ob-41
jective function is assigned to each one, namely one

subpopulation aims at minimising the original objec- 43
tive function while the other aims at minimising the
residual on the constraints defined as 45

min
y∈D

f (y) =
q∑

j=1

eRj , (17)

where q is the number of violated constraints and Rj 47
is the residual of the j th violated constraints. The two
subpopulations are evolved in parallel and individuals 49
are allowed to jump from one population to the other,
i.e. if a feasible individual becomes infeasible it is in- 51
serted in the subpopulation of infeasible individuals
and assigned to the solution of problem (17), on the 53
other hand if an infeasible individual becomes feasi-
ble it is inserted in the population of feasible individ- 55
uals and allocated to the minimisation of the original
bound-constrained objective function f. As a result, the 57
final optimal solution is either feasible or minimises
infeasibilities. 59

This procedure does not maintain feasibility for any
individual, therefore once a feasible set has been found 61
the perception mechanism is used to ensure that every
move maintains the feasible population inside the fea- 63
sible set. If f ∗ is the value of the objective function
of an individual y inside the feasible set, the objective 65
function of a new individual generated from y is then
augmented in the following way: 67

min
y∈D

f =
{

f ∗ if every Rj �0,

f ∗ + max R if any Rj > 0.
(18)

The described strategy co-evolving two populations 69
with two different goals, allows a flexible search for
feasible optimal solutions: in fact through the de- 71
scribed use of the perception mechanism feasibility
can be enforced on all feasible solutions or just on 73
the best among the feasible ones. In the former case
the exploration of the solution space may be over pe- 75
nalised reducing the convergence rate or leading to a
local minimum, on the other hand the latter strategy, 77
while preserving the feasibility of at least the best
solution, allows a more extensive search along the 79
boundary of the feasible region.

3.4. Interval analysis and stopping criterions 81

There are two combined stopping criteria: one for
local convergence and one for global convergence. 83
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Both are based on some heuristics and not on any rig-1
orous proof of global converge. Local convergence of
each subpopulation is determined by the improvement3
of each individual and by the migration radius. In a
convex problem, both should tend to zero in the neigh-5
bourhood of the solution. Since each individual is sup-
posed either to converge to a different minimum or7
not to converge (letting just the individual with highest
rank in the filter to converge) a global stopping crite-9
rion for the evolution step is the convergence of the
filter. The convergence of the filter is determined by11
the convergence of all the individuals if they are not
clustered, i.e. if their migration regions are not inter-13
secting, and, otherwise, by the convergence of the best
individual. Convergence for an individual is reached15
when its migration radius drops below a given thresh-
old. It must be noticed that when evolution step is used17
in conjunction with branching the convergence of the
filter is not usually necessary since the branching takes19
care of the global exploration of the solution space.
The global convergence of the branching is reached21
either if all the nodes reduce below a given tolerance
or if evolution steps have converged in all subdomains23
and no improvement is reported after branching, i.e.
no new local minima are discovered. Interval analysis,25
when used, guarantees that the node containing the
global minimum is always in the list of explored nodes27
therefore if the difference between the inferior value
of the best node and the best individual contained in29
that node is below a given tolerance, convergence to
the global optimum is achieved.31

The process is initialised defining the boundaries of
the search space D, setting the value for 
, the number33
of individuals and the dimension of the filter, then the
algorithm proceeds in the exploration until one of the35
stopping criteria is met or the maximum number of
function evaluations is reached.37

Human intervention is therefore limited to the ini-
tial definition of the search space and of the number of39
exploring individuals but it must be underlined that the
branching step allows a loose definition of the bound-41
aries as opposed to common evolutionary approaches
[8]. On the other hand the stochastic nature of the43
evolution step makes the method robust against land-
scapes which might deceive systematic methods [10].45

The total computational cost of each run depends
on the total number of function evaluations and the47
level of exhaustiveness can be tuned changing 
 and

the number of levels of branching thus increasing or 49
reducing the total number of function evaluations as
desired. Since, here the interest is a characterisation of 51
the solution space more than a quick convergence to
the global optimum, 
 has been set to 0.9, the maxi- 53
mum number of branching steps has been set to 4, gen-
erating a maximum of 81 subdomains and the number 55
of function evaluation for the evolution step has been
limited to 6000. 57

4. Characterisation of Earth–Mars roundtrips

The global search algorithm presented in the previ- 59
ous chapters is now applied to the problem of charac-
terising Earth–Mars transfers. 61

The first analysis looks for roundtrips from Earth
to Mars with minimal total �v. Roundtrip trajectories 63
are made of an Earth–Mars transfer, departing from
either a circular or an elliptical orbit around the Earth 65
and aiming at either a circular or an elliptical orbit
around Mars, a certain stay time around Mars and a 67
return transfer to either a circular or an elliptical orbit
around the Earth. Depending on the launch date and 69
on the transfer time, for each leg, different families of
roundtrips can be envisaged. In order to include even 71
free return trajectories, instead of a braking and a de-
parture manoeuvre, a swing-by of Mars is performed 73
every time the stay time drops below 1 day.

4.1. Problem modelling 75

Each transfer is computed in a three-dimensional
heliocentric ecliptic reference frame, as the solution of 77
a Lambert’s problem for the restricted 2-body problem
[17]. Each planet is considered as a point mass with 79
no gravity. Ephemeris of the planets are computed
analytically as polynomial expansions of the orbital 81
parameters as a function of the modified Julian date
(MJD2000). 83

The resulting global optimisation problem can be
formulated as 85

min
D

f = �v1 + �v2 + �v3 + �v4, (19)

where �v2 and �v3 represent, respectively, the brak- 87
ing manoeuvre and the departure manoeuvre at Mars,
while �v1 and �v4 are, respectively, the departure 89
manoeuvre and the braking manoeuvre at Earth.
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Each �v is computed as the difference between the1
velocity at the pericentre of the arrival or departure
planetocentric hyperbola and the velocity at the peri-3
centre of a planeteocentric orbit with pericentre and
apocentre radius (rE

p , rE
a ) for Earth and (rM

p , rM
a ) for5

Mars, respectively. The v∞ of each hyperbola is de-
rived from the solution of the above mentioned Lam-7
bert’s problem and from the velocity of each planet on
its orbit.9

Thus the �vs are functions of the departure date
t0, the time of flight for the outbound leg T1 and for11
the inbound leg T2, the stay time ts. Each solution is
therefore defined by the following vector:13

y = [t0, T1, T2, ts, r
E
p , rE

a , rM
p , rM

a ]T. (20)

And the solution space D contains all possible values15
of y. In case of swing-by of Mars a linked-conic ap-
proximation of the gravity manoeuvre is used and the17
objective function becomes:

f = �v1 + 10C2
1 + 20C2

2 + �v4, (21)19

where the two constraint violations for the swing-by
manoeuvre, C1 and C2 are defined as21

C1 = v2
i − v2

o; C2 = 〈vi, vo〉 + cos(2�)vivo, (22)

where vi and vo are the incoming and outgoing ve-23
locity vectors relative to Mars and � is the deviation
angle, function of the modulus of the incoming veloc-25
ity, of the radius rM

p of the pericentre at Mars and of
the gravity constant 
M of Mars.27

� = a cos

(

M

v2
i rM

p + 
M

)
. (23)

A further analysis of return trajectories via Venus has29
been done, introducing an additional swing-by in the
model and extending the solution vector (and therefore31
the domain D) as follows:

y = [t0, T1, T2, ts, r
E
p , rE

a , rM
p , rM

a ,�, rV
p , T3, T4]T,

(24)33

where now T2 is the time of flight from Mars to Venus,
rV

p is the pericentre radius at Venus, � is the rotation35
angle of the plane of the hyperbola around the in-
coming vector with respect to the ecliptic plane [16],37
T3 is the time of flight after the swing-by, to a deep
space manoeuvre and T4 is the time of flight from the39

Table 1
Domain D for the roundtrip problem

Variable Lower bound Upper bound

t0 (MJD) 5479 15775
T1 (day) 50 700
T2 (day) 50 700
ts (day) 0 600
rE
P (km) 6778 6778

rE
a (km) 6778 6778

rM
p (km) 3789 5.7e5

rM
a (km) 3789 5.7e5

deep space manoeuvre to the Earth. The new objective
function must include the deep space manoeuvre and 41
therefore becomes:

min
D

f = �v1 + �v2 + �v3 + �v4 + �v5. (25) 43

4.1.1. Short and long stay options
At first problem (19) was solved looking for 45

roundtrips with a variable stay time ranging from 0
to 600 days and evaluating the total �v necessary 47
for each launch opportunity. Then, the search was
focused on short stay opportunities including returns 49
via Venus (commonly called opposition class mis-
sions). The solution space D for problems (19) and 51
(21) is defined in Table 1 and comprises all the pos-
sibilities including free return trajectories. Launch 53
windows from 2015 to 2043 were explored and all
the solutions with a total �v less than 13 km/s have 55
been collected and plotted in Figs. 2 and 3, where
diamonds represent short stay and free return options. 57

Then if the upper limit on total �v is extended to
15 km/s several short stay trajectories with a return via 59
Venus become feasible. The result has been plotted in
Fig. 4. It should be noticed that a return via Venus is 61
not always available and for each solution via Venus
it is often possible to find a direct return with a com- 63
parable level of �v. This is true apart from two launch
windows in which only a return via Venus allows, for 65
a short stay, a total �v less than 15 km/s. Furthermore,
for two particular launch opportunities (13 years away 67
from one another) an almost continuous range of short
stay periods are allowed. 69

The latter one of the two comprises almost all the
returns via Venus since for this date Venus is in a 71
particularly favourable position.



UNCORRECTED P
ROOF

AA2302
ARTICLE IN PRESS

M. Vasile et al. / Acta Astronautica ( ) – 9

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
x 104

0

100

200

300

400

500

600

700

Departure Date [MJD]

T
O

F 
[d

ay
]

Total ∆v<13 km/s

Fig. 2. Departure date vs. TOF.
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Fig. 3. Departure vs. stay time.

Very short stays (less than 10 days) are also possi-1
ble both via Venus and via direct return. This class of
trajectories can become interesting as abort options in3
case an immediate return is necessary and a manoeu-
vre at Mars can still be executed. The most interest-5
ing options for a short stay either via Venus are sum-
marised in Table 2 for the period from 2028 to 20377
while optimal solutions for each launch date, in the
same period, are summarised in Table 3.9

Since total absorbed radiation dose is one of the key
issues for human Mars mission design and since the11
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Fig. 4. Return via Venus vs. direct return.

trajectory choices are the most influential parameters,
the total dose due to galactic cosmic radiation (GCR) 13
were calculated for all presented options in Table 3.
The values are equivalent BFO dose values in siev- 15
ert (Sv). Interplanetary dose values behind 10 g/cm2

Al are assumed at 0.24 Sv/a. Mars surface levels be- 17
hind 5 g/cm2 Al are assumed 0.15 Sv/a. Dose lev-
els for equivalent PE shielding materials are given in 19
brackets.

Due to the stochastic nature of the method, for this 21
case the evolutionary-branching algorithm was run
twice to check the exploration of the solution space 23
was sufficiently exhaustive. In both cases the algo-
rithm, implemented in a Matlab code, took about one 25
hour on a 2 GHz Pentium 4 m with 256 Mb of RAM.

4.1.2. Free return trajectories and cyclers 27
As can be noticed in Fig. 3, for each launch window

it is possible to find a solution with a stay period below 29
1 day, which in fact corresponds to a trajectory that
departs from Earth, flies by Mars and comes back 31
to Earth ballistically, i.e. without manoeuvres. These
trajectories, known as free return trajectories, can be 33
grouped in three main categories (see Fig. 5).

The first one comprises all transfers with a low 35
departure velocity from Earth, a correspondent short
transfer arc to Mars and a long arc leading the space- 37
craft back to Earth again with a low arrival velocity
(see Fig. 6). The overall period in space is about two 39
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Table 2
Best short stay options via Venus from 2028 to 2037

Launch E–M M–E ts �v1 �v2 �v3 �v4 �v5
Date (day) (day) (day) (km/s) (km/s) (km/s) (km/s) (km/s)

21/10/2028 252 251 2 4.16 3.63 4.80 5.98 0.193
04/07/2029 529 404 2 4.28 5.28 3.27 4.72 1.579
30/06/2031 460 490 2 4.12 4.56 3.28 6.53 0.644
16/04/2033 199 352 28 3.59 2.43 4.21 3.94 6.15e-4
17/02/2035 236 318 2 4.97 3.02 4.29 3.78 3.13e-4
02/09/2037 225 475 30 4.06 2.03 3.33 4.36 1.369

Table 3
Optimal solutions for direct Earth–Mars roundtrip from 2028 to 2037

Launch E–M M–E ts �v1 �v2 �v3 �v4 GCR mf/m0
Date (day) (day) (day) (km/s) (km/s) (km/s) (km/s) (Sv)

23/11/2028 300.1 353.5 344.1 3.589 2.244 2.077 3.9348 0.57(0.43) 0.035
09/08/2029 596.6 320.9 600 4.366 5.067 2.1498 4.123 0.85(0.63) 0.01
24/12/2030 283.1 217.7 497.8 3.663 2.53 1.992 3.749 0.53(0.38) 0.035
17/02/2031 210.7 217.7 514.9 3.806 2.776 1.992 3.749 0.49(0.35) 0.031
16/04/2033 199.7 198.0 553.0 3.587 2.435 2.239 3.589 0.49(0.34) 0.036
26/11/2034 248.1 251.0 30 6.1361 3.9151 3.498 5.1868 0.34(0.28) 0.003
27/06/2035 201.9 267.5 535.6 3.6447 2.07 2.5836 3.689 0.53(0.37) 0.034
02/06/2036 700 284.9 444.0 4.7548 8.347 2.313 3.5439 0.83(0.64) 0.001
15/08/2037 347.5 282.9 358.1 3.9298 2.131 2.313 3.5439 0.56(0.42) 0.035
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Fig. 5. Free return trajectories.
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Fig. 8. Short roundtrip.

terrestrial years, therefore, in analogy with Earth–Mars1
one-synodic-period cyclers, these free return trajecto-
ries are here called up escalators. The second category3
comprises all free return trajectories with an initial
long transfer to Mars and a short return leg to Earth,5
the total time in space is again about 2 years and there-
fore these trajectories are here called down escalators7
(see Fig. 7). The third category of free return trajec-
tories presents a relatively short transfer time on both9
legs either to go or to come back (see Fig. 8).

As can be seen in Fig. 5 short free return trajectories 11
can be subdivided further in three groups depending
on the length of each leg. All best free return oppor- 13
tunities for the period from 2028 to 2037 have been
summarised in Table 4 where transfer time, infinite 15
velocity at Mars and �vs at Earth are reported. As can
be read, although up and down escalators are appeal- 17
ing for their relatively low �v at departure they can
become prohibitive if the spacecraft has to be inserted 19
in orbit around Mars with a propulsive manoeuvre,
due to the high infinite velocity. 21

On the other hand, some short free return options,
although more demanding in terms of �v at departure 23
have in general a lower velocity at Mars and could
be interesting either as nominal trajectories in order 25
to increase safety for manned missions or as abort
options. 27

In fact if a failure, not affecting the propulsion sys-
tem, forces the mission to be aborted on the way to 29
Mars, in some cases, a deep space manoeuvre, ex-
ploiting the whole remaining propellant, could be used 31
to inject the spacecraft on a short free return transfer
back to Earth. 33

Similar results, although for different launch dates
and obtained with a fully systematic search method, 35
can be found in [18,19].

4.2. Optimal staging 37

Even in case cryogenic propellants are consid-
ered for propulsion (with an Isp = 450 s) the mass 39
budget for a roundtrip to Mars could be prohibitive
even for minimum �v transfers (see last column of 41
Table 3). A solution could be to resort to staging
in order to improve the payload returned to Earth. 43
Therefore, the natural extension of problem (19) is to
introduce staging sequences in the model and to opti- 45
mise for the final mass mf instead of the total �v. The
staging model assumed here is fairly simple and does 47
not take into account gravity losses. Furthermore, a
constant specific impulse and a constant structural 49
factor of 0.15 has been considered for each stage.

mi+1 = mie
−�v/g0Isp , (26) 51

mi+1 = mpl + mpi+1 + msi+1 + msi , (27)

ms = 0.15mp (28) 53
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Table 4
Best free return options found from 2028 to 2037

Launch date E–M (day) M–E (day) �v1 (km/s) �v4 (km/s) v∞ (km/s) rp (km)

26/12/2028 141.1 588.4 4.281 4.283 10.77 43389
01/08/2029 582.49 147.4 4.349 4.347 6.961 43301
18/09/2030 272.5 253.82 5.827 8.11 5.253 3789.0
09/02/2031 122.87 600 4.285 4.319 11.653 43389
21/11/2032 252.67 255.98 4.977 6.38 5.1056 3790.7
12/04/2033 99.05 600 4.446 4.876 11.44 13732
02/01/2034 600 90.48 5.103 4.499 10.488 9840.1
25/02/2036 600 113.5 4.504 4.311 11.776 36714
24/01/2037 254.32 262.8 7.2679 5.2115 5.252 3789.0

Table 5
Mass fractions at arrival at Earth with 2 stages

Date rE
a (km) �E

i rM
a (km) �M

i mf/m0

23/11/2028 5.4e4 0.162 1.9e5 0.03 0.168
24/12/2030 4.3e4 0.195 1.0e5 0.06 0.167
16/04/2033 4.1e4 0.197 4.1e5 0.015 0.168
09/07/2035 4.8e4 0.178 5.0e5 0.01 0.166

the objective function then becomes:1

max
y∈D

f = −mf/m0, (29)

where m0 is the initial mass and each solution is de-3
fined by the vector:

y = [t0, T1, T2, ts, r
E
p , rE

a , rM
p , rM

a , �E
i , �M

i ]T, (30)5

where �E
i and �M

i represent for Earth departure and for
Mars insertion respectively the ratio between the apoc-7
entre of the departure (arrival) orbit rE

a (rM
a ) and the

apocentre radius of the intermediate orbits. The peri-9
centre altitude of the departure (arrival) is constrained
to be at 400 km and the initial and final orbits are as-11
sumed to be circular with the same altitude. Therefore,
if a 2-stage strategy is used for Earth escape the first13
stage injects the spacecraft from the 400×400 km cir-
cular orbit into an intermediate orbit with apocentre15
�E

1 rE
a and the second stage injects the spacecraft into

a departure orbit with apocentre rE
a. Furthermore, the17

number of stages is fixed and equal for each escape
or capture manoeuvre. In Table 5 some optimal solu-19
tions for the interval [2028, 2037] are reported for a
2-stage strategy.21

5. Low-thrust transfers

All the analysis of the previous chapter assumed 23
the use a high thrust engines, however, low-thrust
propulsion systems may become interesting both for 25
manned and unmanned missions. Therefore, an anal-
ysis of direct low-thrust Earth–Mars transfer will fol- 27
low. A low-thrust trajectory is here modelled using
an inverse method: the Cartesian coordinates of the 29
spacecraft are described by means of a set of pseudo-
equinoctial elements �. The set of elements used to 31
parameterise the Cartesian coordinates are here called
pseudo-equinoctial because they do not satisfy exactly 33
the Gauss’planetary equations unless the thrust is zero.
Each element is then developed in form of a parame- 35
terised function of the anomaly L. This function is the
shape of the pseudo-element. 37

Once position is defined in terms of the pseudo-
elements velocity and accelerations can be computed 39
by differentiation:

v = dr

dt
= dr

dL

dL

dt
; a = dv

dt
= dv

dL

dL

dt
, 41

dr

dL
=

5∑
i=1

�r

��i

��i

�L
+ �r

�L
. (31)

In order to obtain the set of pseudo-elements that sat- 43
isfies exactly the conditions at boundaries, the follow-
ing nonlinear programming problem must be solved: 45

r(�(L0), L0) = r0; v(�(L0), L0) = v0;

r(�(Lf), Lf) = rf ; v(�(Lf), Lf) = vf ; (32) 47
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where for low values of the acceleration it is sufficient1
to solve the easier linear problem:

�(L0) = �0; �(Lf) = �f . (33)3

For each set of pseudo-elements a different trajectory
can be generated, connecting two points in the state5
space. The controls necessary to achieve the imposed
shape of the trajectory can then be obtained by solving7
the following system:

ac = a − 

r3

r; mf = m0e
∫ tf
t0

−c|ac| dt (34)9

with the additional constraint

tf − t0 =
∫ Lf

L0

dt

dL
dL. (35)

11

This approach is extremely fast and the computational
cost extremely low since no propagation or collocation13
is necessary.

Of course the thrust profile, though constrainable,15
is a direct consequence of the shape and must be con-
sidered only as a first guess useful for further, more17
refined optimisation. However, the attempt here is to
widely explore the solution space rather then to find19
an accurate solution. For this reason the design of the
low-thrust trajectory has not been written either in the21
optimal control form (with adjoint equations) or in any
direct transcription form (collocation or shooting).23

It is anyway expected that as the shape of the
pseudo-elements approaches the solution of the corre-25
sponding optimal control problem the inverse method
will yield the associated optimal control for the thrust.27
For the analysis conducted in this paper the following
shape has been used:29

�(L) = �0 + �f(L − L0) + p sin(L − L0), (36)

where p = [p1,p2,p3,p4,p5]T is a set of parameters31
shaping each pseudo-element.

The optimality of the solution found can be seen33
from the comparison with the optimal solution com-
puted for Mars Exobiology. In the optimised solution35
the trajectory is characterised by two cost arcs and
three thrust arcs and a maximum thrust dependent on37
the distance from the Sun. On the other hand, the first
estimate obtained with the inverse approach does not39
contain any model for power and thrust and no coast
arcs are introduced a priori.

Table 6
Domain D for the low-thrust problem

Variable Lower bound Upper bound

N 0 2
t0 (MJD) 2500 3000
T1 (day) 500 1e3
� −� −�
� −� −�
p1 −0.1 0.1
p2 −0.1 0.1
p3 −0.1 0.1
p4 −0.1 0.1
p5 −0.1 0.1
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Fig. 9. Mars Exobiology test case.

The optimisation problem then becomes 41

min
D

−mf ,

tf − t0 = 0; ac �amax, (37) 43

and the solution vector is

y = [n, t0, T1, �,�, p1, p2, p3, p4, p5]T, (38) 45

where n is an integer number representing the num-
ber of revolutions, t0 is the departure date and T1 the 47
transfer time. The domain D is specified in Table 6.

The resulting trajectory is represented in Fig. 9 with 49
the associated thrust profile plot in Fig. 10. The main
characteristics of the two trajectories are summarised 51
and compared in Table 7 where FG stands for first
guess and represents the solution computed with the 53
inverse approach.
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Fig. 10. Thrust profile.

Table 7
Comparison with Mars Exobiology

Sol. Departure TOF(day) mf/m0 v∞ (m/s)

Opt. 18/03/2007 873 0.16 622
FG 09/03/2007 772.1 0.162 622

The algorithm successfully identified a solution 1
with a low mass consumption comparable with the
optimised solution for Mars Exobiology. The transfer3
time however is quite different due to the selected
shape of the orbit. The solution found is expected to5
have an error in the velocity due to the not exact so-
lution of problem (32). However, this error has been7
verified to lead, in general, to an equivalent error in
propellant consumption which is below 15%. There-9
fore this solution can be considered acceptable as a
first estimate of a possible transfer with low-thrust11
propulsion, since the error is within the usual margin
taken in preliminary mission design.13

5.1. Low-thrust transfers with ballistic capture at
Mars15

The propellant consumption to reach Mars with a
low excess velocity, provided by low thrust transfers17
opens the interesting possibility to exploit lagrangian
points of the Mars–Sun system to attempt a low-energy19
capture in Martian orbit. Maintaining the previous
model for low-thrust arcs now the dynamics at arrival21

Table 8
Low-thrust transfers with ballistic capture

Departure amax.(m/s2) TOF(day) mf/m0 v∞(km/s)

15/08/2030 2.3e-4 721 0.165 0.2
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Fig. 11. Temporary capture.

is modelled taking into account 3rd body effects. Fi-
nal conditions at Mars are taken perturbing the state 23
vector at L1 and propagating backward for a time �t

the following dynamic equations: 25

dx̃
dt

= F̃(x̃, t) =
{

ṽ

−
M
r̃3 r̃ − 
S

(
d
d3 + rS

r3
S

)
,

(39)

where 
S is the gravity constant of the Sun, rS is the 27
position vector of the Sun with respect to Mars and
[r̃, ṽ] is the state vector of the spacecraft with respect 29
to Mars.

The solution vector has been extended as follows: 31

y = [n, t0, T1,�t, �v1, �v2, �v3, p1, p2, p3, p4, p5]T,

(40)

where now �v1,�v2 and �v3 are the three components 33
of the velocity vector at the lagrangian point L1 de-
fined in the local radial, transversal, normal martian 35
reference frame. The value of first component belongs
to the interval [−0.12, 0.0] km/s while the values of 37
the others belong to the interval [−0.12, 0.12] km/s.

The resulting point in deep space at the end of 39
the backward propagation, represents the target of
the electric propulsion arc. An example of low-thrust 41
transfer of this kind is reported in reported in Table 8.
The arrival at Mars has been plotted in Figs. 11 and 43
12 for an unpowered and for a powered capture. In the
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Fig. 12. Permanent capture with low-thrust manoeuvre at periares.

first case no manoeuvres are performed at periapsis1
and the resulting capture by Mars is only temporary
and lasts less than 500 days. In the second case a3
low-thrust manoeuvre is inserted when the distance
from Mars falls down below 1e5 km, the resulting5
capture is now permanent.

In this case the evolutionary-branching algorithm7
was not applied to characterise the solution space.
A first interval was computed running evolutionary-9
branching with the model described in the previous
chapter (i.e. without 3rd body effects) then just the11
evolution step was run, including 3rd body effects in
the model and imposing a minimum of 50 days for �t .13

This first result is encouraging and suggests further
investigations in this direction.15

6. Conclusions

In this paper a combined systematic-heuristic ap-17
proach is proposed to solve trajectory design problems
in which more than one solution is expected and where19
not just the global optimum should be obtained. The
proposed combination of evolutionary algorithms and21
branching is suitable for problems characterised by
differentiable and non-differentiable functions com-23
bining integer and real variables, and demonstrated to
be an interesting tool for preliminary mission analysis25
especially when the objective function is a black-box.
In fact, in this respect an ad hoc systematic approach27
specifically dedicated to solve a certain problem is ex-
pected to be more efficient.29

The capabilities of this approach have been demon-
strated by solving the complex problem of identifying31

all optimal solutions for a Mars roundtrip in a given
time frame. This first analysis has revealed that free 33
return trajectories are always available for each launch
window and can be classified in three major groups 35
depending on the length of each transfer leg. Although
all of them present the significant drawback of hav- 37
ing high velocity either at Earth or at Mars they could
represent an option for high specific impulse engines 39
or as abort options. Among nominal transfers in the
time frame 2028, 2037 the 2033 launch window seems 41
to offer interesting features since the transfer time for
both legs is relatively low with an associated low to- 43
tal �v and a low cost return via Venus is possible for
a short stay. For nominal transfers the analysis of op- 45
timal staging sequences has shown how the optimal
orbit for departure from Earth is elliptical but with 47
the apocentre almost at the altitude of a geostation-
ary orbit while for Mars the apocentre is much closer 49
to the sphere of influence. Finally, the last analysis
presented has opened the interesting possibility to use 51
low-thrust transfers for low-energy planetary capture
at Mars. However, this problem and the inverse ap- 53
proach used to design low-thrust arcs, are the subjects
of an ongoing more detailed analysis and therefore, 55
the results presented in this paper must be considered
preliminary. 57

The proposed optimisation algorithm appears to be
promising for generally complex space trajectory de- 59
sign problems. Despite the effective exploration capa-
bilities demonstrated in the cases presented in this pa- 61
per, the efficiency of the method has still large margins
for improvement and the convergence to the global 63
optimum is still not guaranteed if not in a probabilis-
tic sense or after an infinite number of subdivisions 65
of the branching step. In this respect the proposed use
of interval analysis, when actually viable, represents 67
a promising way of guaranteeing and controlling con-
vergence. 69

An improved version of the algorithm is already
under development and will be presented in future 71
works.
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