Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Multiscale lattice Boltzmann approach to modeling gas flows

Meng, Jian-Ping and Zhang, Yonghao and Shan, Xiaowen (2011) Multiscale lattice Boltzmann approach to modeling gas flows. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 83 (4). ISSN 1063-651X

[img] PDF
Zhang_YH_Pure_Multiscale_lattice_Boltzmann_approach_to_modeling_gas_flows_Apr_2011.pdf - Preprint

Download (316kB)

Abstract

For multiscale gas flows, kinetic-continuum hybrid method is usually used to balance the computational accuracy and efficiency. However, the kinetic-continuum coupling is not straightforward since the coupled methods are based on different theoretical frameworks. In particular, it is not easy to recover the non-equilibrium information required by the kinetic method which is lost by the continuum model at the coupling interface. Therefore, we present a multiscale lattice Boltzmann (LB) method which deploys high-order LB models in highly rarefied flow regions and low-order ones in less rarefied regions. Since this multiscale approach is based on the same theoretical framework, the coupling process becomes simple. The non-equilibrium information will not be lost at the interface as low-order LB models can also retain this information. The simulation results confirm that the present method can achieve modeling accuracy with reduced computational cost.