Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Speech enhancement using adaptive empirical mode decomposition

Chatlani, N. and Soraghan, J. J. (2009) Speech enhancement using adaptive empirical mode decomposition. In: Digital Signal Processing, 2009 16th International Conference on. IEEE. ISBN 978-1-4244-3297-4

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Speech enhancement is performed in a wide and varied range of instruments and systems. In this paper, a novel approach to speech enhancement using adaptive empirical mode decomposition (SEAEMD) is presented. Spectral analysis of non-stationary signals can be performed by employing techniques such as the STFT and the Wavelet transform (WT), which use predefined basis functions. Empirical mode decomposition (EMD) performs very well in such environments. EMD decomposes a signal into a finite number of data-adaptive basis functions, called intrinsic mode functions (IMFs). The new SEAEMD system incorporates this multi-resolution approach with adaptive noise cancellation (ANC) for effective speech enhancement on an IMF level, in stationary and non-stationary noise environments. A comparative performance study is included that compares the competitive method of conventional ANC to the robust SEAEMD system. The results demonstrate that the new system achieves significantly improved speech quality with a lower level of residual noise.