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Abstract. The paper presents an integrated view of the population structure and its role in
establishing the ionisation state of light elements in dynamic, finite density, laboratory and
astrophysical plasmas. There are four main issues, the generalised collisional-radiative picture
for metastables in dynamic plasmas with Maxwellian free electrons and its particularising
to light elements, the methods of bundling and projection for manipulating the population
equations, the systematic production/use of state selective fundamental collision data in the
metastable resolved picture to all levels for collisonal-radiative modelling and the delivery of
appropriate derived coefficients for experiment analysis. The ions of carbon, oxygen and neon
are used in illustration. The practical implementation of themethods described here is part of
the ADAS Project.
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1. Introduction

The broad mechanism for radiation emission from a hot tenuous plasma is simple. Thermal
kinetic energy of free electrons in the plasma is transferred by collisions to the internal energy
of impurity ions,

A + e→ A∗ + e (1)

whereA∗ denotes an excited state andA the ground state of the impurity ion. This energy is
then radiated as spectrum line photons which escape from theplasma volume

A∗ → A + hν̄. (2)

wherehν̄ is the emitted photon energy and ¯ν its frequency. Similarly ions in general increase
or decrease their charge state by collisions with electrons

A + e → A+ + e+ e

A+ + e→ A + hν̄ (3)

whereA+ denotes the next ionisation stage of impurity ionA. The situation is often referred
to as thecoronal picture. The coronal picture has been the basis for the description of
impurities in fusion plasmas for many years. However, the progress towards ignition of
fusion plasmas and to higher density plasmas requires a description beyond the coronal
approximation. Models of finite density plasmas which include some parts of the competition
between radiative and collisional processes are loosely called collisional-radiative. However,
collisional-radiative theory in its origins (Bateset al , 1962) was designed for the description
of dynamic plasmas and this aspect is essential for the present situations of divertors, heavy
species, transport barriers and transient events. The present work is centred ongeneralised
collisional radiative(GCR) theory (McWhirter and Summers, 1984) which is developed in the
following sections. It is shown that consideration of relaxation time-scales, metastable states,
secondary collisions etc. - aspects rigorously specified incollisional-radiative theory - allow
an atomic description suitable for modelling the newer areas above. The detailed quantitative
description is complicated because of the need to evaluate individually the many controlling
collisional and radiative processes, a task which is compounded by the variety of atoms and
ions which participate. The focus is restricted to plasmas which are optically thin and not
influenced by external radiation fields, and for which groundand metastable populations of
ions dominate other excited ion populations. The paper provides an overview of key methods
used to expedite this for light elements and draws illustrative results from the ions of carbon,
oxygen and neon. The paper is intended as the first of a series of papers on the application of
collisional-radiative modelling in more advanced plasma scenarios and to specific important
species.

The practical implementation of the methods described hereis part of the ADAS (Atomic
Data and Analysis Structure) Project (Summers, 1993, 2004). Illustrations are drawn from
ADAS codes and the ADAS fundamental and derived databases.

1.1. Time constants

The lifetimes of the various states of atoms, ions and electrons in a plasma to radiative
or collisional processes vary enormously. Of particular concern for spectroscopic studies
of dynamic finite density plasmas are those of translationalstates of free electrons, atoms
and ions and internal excited states (including states of ionisation) of atoms and ions.
These lifetimes determine the relaxation times of the various populations, the rank order of
which, together with their values relative to observation times and plasma development times
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determines the modelling approach. The key lifetimes divide into two groups. The first is
the intrinsic group, comprising purely atomic parameters, and includes metastable radiative
decay,τm, ordinary excited state radiative decayτo and auto-ionising state decay (radiative
and Auger),τa. The intrinsic group for a particular ion is generally ordered as

τa << τo << τm (4)

with typical values

τm ∼ 101/z8 s, τo ∼ 10−8/z4 s, τa ∼ 10−13 s. (5)

wherez is the ion charge. The second is theextrinsic group, which depends on plasma
conditions - especially particle density. It includes freeparticle thermalisation (including
electron-electronτe−e, ion-ionτi−i and ion-electronτi−e), charge-state change (ionisationτion

and recombinationτrec) and redistribution of population amongst excited ion states (τred). The
extrinsic group is ordered in general as

τion,rec >> τi−e >> τi−i >> τe−e (6)

with approximate expressions for the time constants given by

τrec ∼ [1011 − 1013](1/(z+ 1)2)(kTe/IH)1/2(cm−3/Ne) s

τion ∼ [105 − 107](z+ 1)4(IH/kTe)
1/2eχ/kTe(cm−3/Ne) s

τi−i ∼ [7.0× 107](mi/mp)1/2

(kTe/IH)3/2(1/z4)(cm−3/Ni) s (7)

τi−e ∼ [1.4× 109](mi/mp)1/2

((kTe/IH) + 5.4× 10−4(kTi/IH)(mp/mi))
3/2

(1/z2)(cm−3/Ni) s

τe−e ∼ [1.6× 106](kTe/IH)3/2(cm−3/Ni) s.

The ion mass ismi , the proton massmp, the ionisation potentialχ, the ion densityNi , the
electron densityNe, the ion temperatureTi , the electron temperatureTe and the ionisation
energy of hydrogen isIH. τred may span across the inequalities of equation 6 and is discussed
in a later paragraph.

From a dynamic point of view, the intrinsic and extrinsic groups are to be compared with
each other and with timescales,τplasma, representing plasma ion diffusion across temperature
or density scale lengths, relaxation times of transient phenomena and observation times. For
most plasmas in magnetic confinement fusion and astrophysics

τplasma∼ τg ∼ τm >> τo >> τe−e (8)

whereτg represents the relaxation time of ground state populationsof ions (a composite of
τrec andτion) and it is such plasmas which are addressed in this paper. These time-scales
imply that the dominant populations of impurities in the plasma are those of the ground and
metastable states of the various ions. The dominant populations evolve on time-scales of
the order of plasma diffusion time-scales and so should be modelled dynamically, that is in
the time-dependent, spatially varying, particle number continuity equations, along with the
momentum and energy equations of plasma transport theory. Illustrative results are shown in
figure 1a.

The excited populations of impurities and the free electrons on the other hand may
be assumed relaxed with respect to the instantaneous dominant populations, that is they
are in aquasi-equilibrium. The quasi-equilibrium is determined by local conditions of
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[1] τm (N+0 : 2s22p3 2P - 4S)/τdif , Te = 1 eV

[2] τm (N+0 : 2s22p3 2P - 4S)/τv , Te = 1 eV

[3] τg (Ne+2 : -->Ne+1, Ne+3 )/τd 

[4] τg (Ne+8 : -->Ne+7, Ne+9 )/τd 
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[1] O+3 : doubly excited states 2s2p(1P)nl, n=20, Te
=1.6 x 106 K

[2] O+3 : singly excited states 2s2(1S)n, Te
=1.0 x 106 K

[3] O+1  1:  2s2p4 4P ;   2: 2s22p23p 4D ;  3: 2s22p23d 2G , Te
=1.0 x 105 K

Figure 1. (a) Ratios of ground and metastable lifetimes to plasma timescales arising from
transport of some ions of nitrogen and neon at the edge of fusion plasmas. For N0 the ground
state to metastable state transfer time constant,τm is contrasted withτv = λsol/v with typical
scrape-off-layer thicknessλsol ∼ 2 cm andmv2/2 . 1 eV from chemical or physical sputtering
and withτdi f = λ

2
sol/D where a typical diffusion coefficient D = 104 cm2s−1. For selected

neon ions,τd = λTe,Ne/vdi f is contrasted with the reciprocal of the sum of the inverses of
the ionisation and recombination time constants for the ground state. The latter illustrative
results are for a JET-like tokamak H-mode radial plasma model with shaped diffusion and
pinch terms.Te(r = 0)=1 keV with a pedestal of 30eV atr = a and exponential decay (scale
length= 0.01a) in the scrape of layer at plasma minor radiusa = 100 cm. vdi f combines
pinch and concentration diffusion parts. (b) Critical densities, defined asNe(τred = τ0,a), for
categories of excited populations of some oxygen ions. The x-axis scale for curve [1] is the
orbital angular momentuml of the outer electron of doubly excited states; for curve [2]it is the
principal quantum numbern of the singly excited electron; for curve [3] it is a simple index
to the three low-lying states illustrated. For low levels ofions, τred is markedly sensitive to
the detailed atomic structure.n = 3 valence shells populations are of special relevance to light
element spectroscopy in the visible.
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electron temperature and electron density. So, the atomic modelling may be partially de-
coupled from the impurity transport problem into local calculations which provide quasi-
equilibrium excited ion populations and emissivities and then effective source coefficients
(collisional-radiative coefficients) for dominant populations which must be entered intothe
plasma transport equations. The solution of the transport equations establishes the spatial and
temporal behaviour of the dominant populations which may then be re-associated with the
local emissivity calculations for matching to and analysisof observations.

For excited populations,τred plays a special and complicated role due to the very large
variation in collisional excitation/de-excitation reaction rates with the quantum numbers of
the participating states. In the low density coronal picture τred >> τo and redistribution plays
no part. Critical densities occur forτred ∼ τo and forτred ∼ τa and allow division of the
(in principle) infinite number of excited populations into categories includinglow levels, high
singly excited levelsanddoubly excited levelsfor which important simplifications are possible.
These are examined in section 2. Light element ions in fusionplasmas are generally in the
singly excited state redistibutive case, approaching the doubly excited redistribution case at
the higher densities. Highly ionised ions of heavy species in fusion plasmas approach the
coronal picture. Illustrative results on critical densities are shown in figure 1b.

Finally, because of the generally shortτe−e compared with other timescales (including
those of free-free and free-bound emission), it is usually the case that the free electrons have
close to a Maxwellian distribution. This assumption is madethroughout the present paper, but
is relaxed in the next paper of the series (Bryanset al , 2005).

1.2. Generalised collisional-radiative theory

The basic model was established by Bateset al (1962). The ion in a plasma is viewed
as composed of a complete set of levels indexed byi and j and a set of radiative and
collisional couplings between them denoted byCi j (an element of thecollisional-radiative
matrix representing transition fromj to i) to which are added direct ionisations from each
level of the ion to the next ionisation stage (coefficientSi) and direct recombinations to each
level of the ion from the next ionisation stage (coefficient r i). Thus, for each level, there is a
total loss rate coefficient for its population number density,Ni , given by

−Cii =
∑

j,i

C ji + NeSi . (9)

Following the discussion in the introduction, it is noted that populated metastable states can
exist and there is no real distinction between them and ground states. We use the term
metastablesto denote both ground and metastables states. Metastables are the dominant
populations and so only recombination events which start with a metastable as a collision
partner matter. We condider the population structure of thez-times ionised ion, called the
recombined or child ion. The (z+ 1)-times ionised ion is called the recombining or parent ion
and the (z− 1)-times ionised ion is called the grandchild. The metastables of the recombined
ion are indexed byρ andσ, those of the recombining ion byν and ν′ and those of the
grandchild byµ andµ′. Therefore the ion of charge statez has metastable populationsNρ,
the recombining ion of charge (z+ 1) has metastable populationsN+ν and the grandchild ion
of charge (z− 1) has metastable populationsN−µ . We designate the remaining excited states
of the z-times ionised ion, with the metastables separated, asordinary levels for which we
reserve the indicesi and j and populationsNi and N j . There are then, for example, direct
recombination coefficientsr i,ν from each parent metastable into each child ordinary level and
direct ionisation coefficients from each child ordinary level to each parent metastableSν,i such



H.P. Summers et al. Ionisation state. I. 6

that Si =
∑

ν Sν,i . Also there are direct ionisation coefficientsSρ,µ′ to the metastables of the
child from the metastables of the grandchild. Then the continuity equations for population
number densities are

d
dt
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where the equations for the (z− 1)-times and (z+ 1)-times ionised ions have been simplified
by incorporating their ordinary population contributionsin their metastable contributions
(shown as script capital symbols) as the immediate focus is on thez-times ionised ion. This
incorporation procedure is shown explicitly in the following equations for thez-times ionised
ion through to equations 16 and may be done for each ionisation stage separately. Note
additionally the assumption (made by omission of the (3,1) partition element, where 3 denotes
the row and 1 the column) that state-selective ionisation from the stage (z−1) takes place only
into the metastable manifold of the stagez.

1.2.1. Derived source term coefficients From the quasi-static assumption, we setdNi/dt = 0
and then the matrix equation for the ordinary levels of thez-times ionised ion gives

N j = −C−1
ji CiσNσ − NeC

−1
ji r iν′N

+
ν′ (11)

where we have used summation convention on repeated indices. Substitution in equations 10
for the metastables of thez-times ionised ion gives

dNρ
dt
= Ne

[

Sρµ′
]

N−µ′

+
[

Cρσ −Cρ jC
−1
ji Ciσ

]

Nσ

+ Ne

[

rρν′ −Cρ jC
−1
ji r iν′

]

N+ν′ . (12)

The left-hand-side is interpreted as a total derivative with time-dependent and convective parts
and the right-hand-side comprises the source terms. The terms in square brackets in equations
12 give the effective growth rates of each metastable population of thez-times ionised ion
driven by excitation (or de-excitation) from other metastables of thez-times ionised ion,
by ionisation to the (z + 1)-times ionised ion and excitation to other metastables ofthe z-
times ionised ion (a negatively signed growth) and by recombination from the metastables
of the (z+ 1)-times ionised ion. These are called theGCR coefficients. Following Burgess
and Summers (1969), who used the name ‘collisional-dielectronic’ for ‘collisional-radiative’
when dielectronic recombination is active, we use the nomenclature ACD for the GCR

recombination coefficients which become

ACDν→ρ ≡ Rρν = rρν −Cρ jC
−1
ji r iν. (13)

TheGCR metastable cross-coupling coefficients (forρ , σ) are

QCDσ→ρ ≡ Cρσ/Ne =
[

Cρσ −Cρ jC
−1
ji Ciσ

]

/Ne. (14)

Note that the on-diagonal element
[

Cρσ −Cρ jC−1
ji Ciσ

]

/Ne with σ = ρ is a total loss rate
coefficient from the metastableρ. Substitution from equation 11 in the equations 10 for the
metastables of thez+ 1-times ionised ion gives

dN+ν
dt
= Ne

[

Sνσ − Sν jC
−1
ji Ciσ

]

Nσ

+
[

Cνν′ − N2
eSν jC

−1
ji r iν′

]

N+ν′ . (15)
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TheGCR ionisation coefficients resolved by initial and final metastable state are

SCDσ→ν ≡ Sνσ =
[

Sνσ − Sν jC
−1
ji Ciσ

]

(16)

and note that there is contribution to cross-coupling between parents via recombination to
excited states of thez-times ionised ion followed by re-ionisation to a different metastable,

XCDν′→ν = −Ne

[

Sν jC
−1
ji r iν′

]

. (17)

Consider the sub-matrix comprising the (2,2), (2,3), (3,2)and (3,3) partitions of
equations 10. Introduce the inverse of this sub-matrix as

[

Wρσ Wρ j

Wiσ Wi j

]

=

[

Cρσ Cρ j

Ciσ Ci j

]−1

(18)

and note that the inverse of the (1,1) partition
[

Wρσ
]−1
≡ Cρσ =

[

Cρσ −Cρ jC
−1
ji Ciσ

]

. (19)

This compact representation illustrates, that the imposition of the quasi-static assumption
leading to elimination of the ordinary level populations infavour of the metastable
populations, may be viewed as acondensationin which the influence of the ordinary levels is
projectedonto the metastable levels. The metastables can be condensed in a similar manner
onto the ground restoring the original (ground states only)collisional-radiative picture. The
additive character of the direct metastable couplingsCρσ means that these elements may be
adjusted retrospectively after the main condensations.

1.2.2. Derived emission and power coefficients There are two kinds of derived coefficients
associated with individual spectrum line emission in common use in fusion plasma diagnosis.
These arephoton emissivity coefficients(PEC) and ionisation per photon ratio(SXB). The
reciprocals of the latter are also known asphoton efficiencies. From equations 11, the
emissivity in the spectrum linej → k may be written as

ǫ j→k = = A j→kNeN j = A j→k(
∑

σ

F
(exc)
jσ NeNσ +

M
∑

ν′=1

F
(rec)
jν′ NeN

+
ν′ ). (20)

This allows specification of theexcitationphoton emissivity coefficient

PEC
(exc)
σ, j→k = A j→kF

(exc)
jσ (21)

and therecombinationphoton emissivity coefficient

PEC
(rec)
ν′, j→k = A j→kF

(rec)
jν′ . (22)

The ionisation per photon ratios are most meaningful for theexcitation part of the emissivity
and are

SXB
(ion)
σ, j→k =

Mz−1
∑

ν=1

SCDσ→ν/A j→kF
(exc)
jσ . (23)

Each of these coefficients is associated with a particular metastableσ, ν′ or µ′ of the A+z,
A+z+1 or A+z−1 ions respectively.

The radiated power in a similar manner separates into parts driven by excitation and by
recombination as

PLTσ =
∑

j,k

∆E j→kA j→kF
(exc)
jσ (24)
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called thelow-level line power coefficientand

PRBν′ =
∑

j,k

∆E j→kA j→kF
(rec)
jν′ (25)

called therecombination-bremsstrahlung power coefficientwhere it is convenient to include
bremsstrahlung withPRB. Note that in the generalised picture, additional power forthe
z-times ionised ions occurs in forbidden transitions between metastables as

∑

ρ,σ

∆Eσ→ρAσ→ρNσ (26)

for thez-times ionised ion. In the fusion context, this is usually small. Radiated power is the
most relevant quantity for experimental detection. For modelling, it is theelectron energy loss
functionwhich enters the fluid energy equation. The contribution to the total electron energy
loss rate for thez-times ionised ion associated with ionisation and recombination from the
(z+ 1)-times ionised ion is

∑

ρ

Eρ(
∑

σ

CρσNσ + Ne
∑

ν′

Rρν′Nν′ ) +

∑

ν

Eν(
∑

σ

SνσNσ + Ne
∑

ν′

Cνν′Nν′ ) +

∑

ρ,σ

∆Eσ→ρAσ→ρNσ +
∑

σ

PLTσNeNσ +

∑

ν′

PRBν′NeNν′ (27)

where theEρ andEν are absolute energies of the metastablesρ of thez-times ionised ion and
of the metastablesν of the (z+1)-times ionised ion respectively. Thus the electron energy loss
is a derived quantity from the radiative power coefficients and the other generalised collisonal-
radiative coefficients. Note that cancellations in the summations cause thereduction to relative
energies and that in ionisation equilibrium, the electron energy loss equals the radiative power
loss.

In the following sections, it is shown how the quasi-static assumption and population
categorisation allow us to solve the infinite level population structure of each ion in a
manageable and efficient way. Such solution is necessary for low and medium density
astrophysical and magnetic confinement fusion plasmas. This is unlike the simpler situation
of very dense plasmas where heavy level truncation is used, because of continuum merging.

2. Excited population structure

The handling of metastables in a generalised collisonal-radiative framework requires a
detailed specific classification of level structure compatible with both recombining and
recombined ions. For light element ions, Russell-Saunders(L-S) coupling is appropriate and
it is sufficient to consider only terms, since although fine structure energy separations may be
required for high resolution spectroscopy, relative populations of levels of a term are close
to statistical. So the parent ion metastables are of the formγνLνSν with γν the configuration
and the recombined ion metastables are of the formΓρLρSρ with the configurationΓρ =
γν + ni l i and the excited (including highly excited) terms are (γνLνSν)ni l iLiSi . n and l
denote individual electron principal quantum number and orbital angular momentum,L and
S denote total orbital and total spin angular momenta of the multi-electron ion respectively
in the specification of an ion state in Russell-Saunders coupling. The configuration specifies
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the orbital occupancies of the ion state. For ions of heavy elements, relative populations
of fine structure levels can differ markedly from statistical and it is necessary to work in
intermediate coupling with parent metastables of the formγνJν and recombined metastables
of the formΓρJρ with the configurationΓρ = γν+ni l i and the excited (including highly excited)
levels (γνJν)ni l i j i Ji . There is a problem. To cope with the very many principal quantum
shells participating in the calculations of collisional-dielectronic coefficients at finite density
necessitates a grosser viewpoint (in which populations arebundled), whereas for modelling
detailed spectral line emission, the finer viewpoint (in which populations are fullyresolved) is
required. In practice, each ion tends to have a limited set oflow levels principally responsible
for the dominant spectrum line power emission for which a bundled approach is too imprecise,
that is, averaged energies, oscillator strengths and collision strengths do not provide a good
representation. Note also that key parent transitions for dielectronic recombination span a few
(generally the same) low levels for which precise atomic data are necessary. In the recombined
ion, parentage gives approximate quantum numbers, that is,levels of the samen (andl) divide
into those based on different parents. Lifetimes of levels of the samen but different parents
can vary strongly (for example through secondary autoionisation). Also the recombination
population of such levels is generally from the parent with which they are classified. We

Complete system

1st continuum
2nd continuum

high
levels

low
levels

spin
systems

Bundle-nS model

1st continuum
2nd continuum

Low level + projection model

1st continuum
2nd continuum

Condensation

1st continuum 2nd continuum

n
levels

_
n

levels

Figure 2. Schematic of population modelling and condensation procedures. It represents two
metastable parent states of non-zero spin, so that when annl electron is added, each yields two
spin systems for thez-times ionised ion.

therefore recognise three sets of non-exclusive levels of the recombined ion:

(i) Metastable levels - indexed byρ, σ.

(ii) Low levels - indexed byi, j in a resolved coupling scheme, being the complete set of
levels of a principal quantum shell rangen : n0 ≤ n ≤ n1, including relevant metastables
and spanning transitions contributing substantially to radiative power or of interest for
specific observations.

(iii) Bundled levels - segregated according to the parent metastable upon which they are built
and possibly also by spin system - which can includebundle-nlandbundle-n.

Viewed as a recombining ion, the set (i) must include relevant parents and set (ii) must span
transitions which are dielectronic parent transitions. Time dependence matters only for the
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populations of (i), high precision matters only for groups (i) and (ii) and special very many
level handling techniques matter only for group (iii).

To satisfy the various requirements and to allow linking of population sets at different
resolutions, a series of manipulations on the collisional-radiative matrices are performed
(Summers and Hooper, 1983). To illustrate this, suppose there is a single parent metastable
state. Consider the collisional-radiative matrix for the recombined ion and the right hand side
in the bundle-n picture, and a partition of the populations as [n, n̄] with n : n0 ≤ n ≤ n1

and n̄ : n1 ≤ n̄. Elimination of theNn̄ yields a set of equations for theNn. We call this a
‘condensation’ of the whole set of populations onto then populations. The coefficients are the
effective ionisation coefficients from then, the effective cross-coupling coefficients between
then and the effective recombination coefficients into then, which now include direct parts
and indirect parts through the levels ¯n. Exclusion of the direct terms prior to the manipulations
yields only the the indirect parts. Call theseCindir

nn′ andr indir
nν . We make the assumption that

Cindir
nn′ andr indir

nν may be expanded over the resolved low level set (see section 2.2) to give the
expanded indirect matrixCindir

i j and r indir
iν wherei and j span the resolved low level set (ij).

These indirect couplings are then combined with higher precision direct couplingsCdir
i j and

rdir
iν so that

Ci j = Cdir
i j +Cindir

i j (28)

and

r iν = rdir
iν + r indir

iν . (29)

The procedure is shown schematically in figure 2. The processmay be continued, condensing
the low level set onto the metastable set. The generalised collisional-dielectronic coefficients
are the result. The time dependent and/or spatial non-equilibrium transport equations which
describe the evolution of the ground and metastable populations of ions in a plasma use these
generalised coefficients. Following solution, the condensations can be reversed to recover the
complete set of excited populations and hence any required spectral emission. The progressive
condensation described above can be viewed as simply one of anumber of possible paths
which might be preferred because of special physical conditions or observations.

For light element ions, four types of bundling and condensation are distinguished in this
work:

(a) Ground parent, spin summed bundle-n→ lowest n-shell.

(b) Parent and spin separated bundle-n→ lowest spin system n-shell (thebundle-nS
population model).

(c) Low LS resolved→ metastable states (thelow-level population model).

(d) Parent and spin separated bundle-n→ low LS resolved→ metastable states.

Type (a) corresponds to the approach used in Summers (1974).Type (c) corresponds to the
usual population calculation for low levels in which (consistent) recombination and ionisation
involving excited states are ignored. It establishes the dependence of each population on
excitation for the various metastables only. Type (d), effectively the merging of (b) and (c) in
the manner described earlier, is the principal procedure tobe exploited in this work for first
quality studies. Details are in the following sub-sections.
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Rec. Parent Parent/spin ωSν,S Lowest Nmet

seq. index system metastable
H-like 1 (1s 2S) 1n 0.250 1s2 1S 1

(1s 2S) 3n 0.750 1s2s 3S 1
He-like 1 (1s2 1S) 2n 1.000 1s22s 2S 1

2 (1s2s 3S) 2n 0.333 1s2s2 2S 1
(1s2s 3S) 4n 0.667 1s2s2p 4P 1

Li-like 1 (2s 2S) 1n 0.250 2s2 1S 1
(2s 2S) 3n 0.750 2s2p 3P 1

Be-like 1 (2s2 1S) 2n 1.000 2s22p 2P 1
2 (2s2p 3P) 2n 0.333 2s22p 2P 1

(2s2p 3P) 4n 0.667 2s2p2 4P 1
B-like 1 (2s22p 2P) 3n 0.750 2s22p2 1D 2

(2s22p 2P) 1n 0.250 2s22p2 3P 1
2 (2s2p2 4P) 3n 0.375 2s22p2 3P 1

(2s2p2 4P) 5n 0.625 2s2p3 5S 1
C-like 1 (2s22p2 3P) 4n 0.667 2s22p3 4S 1

(2s22p2 3P) 2n 0.333 2s22p3 2D 2
2 (2s22p2 1D) 2n 1.000 2s22p3 2D 2
3 (2s22p2 1S) 2n 1.000 2s22p3 2D 2
4 (2s2p3 5S) 4n 1.000 2s22p3 4S 1

N-like 1 (2s22p3 4S) 3n 0.375 2s22p4 3P 1
(2s22p3 4S) 5n 0.625 2s22p33s 5S 1

2 (2s22p3 2D) 3n 0.750 2s22p4 3P 1
(2s22p3 2D) 1n 0.250 2s22p4 1D 2

3 (2s22p3 2P) 3n 0.750 2s22p4 3P 1
(2s22p3 2P) 1n 0.250 2s22p4 1D 2

O-like 1 (2s22p4 3P) 2n 0.250 2s22p5 2P 1
(2s22p4 3P) 4n 0.250 2s22p43s 4P 1

2 (2s22p4 1D) 2n 1.000 2s22p43s 2D 2
3 (2s22p4 1S) 2n 1.000 2s22p43s 2D 2

F-like 1 (2s22p5 2P) 1n 0.250 2s22p6 1S 1
(2s22p5 2P) 3n 0.750 2s22p53s 3P 1

Table 1. Bundle-nS calculation pathways. The parent/spin system weight factor is defined in
equation 32 and 33.Nmet indicates the number of metastables of the recombined ion associated
with the parent/spin system. Theparent index, sequentially numbering the different parents
shown in brackets, is used as the reference for tabulation ofcoefficients.

2.1. The bundle-nS model

Now let A+z1 denote the recombining ion andA+z1−1 the recombined ion so thatz = z1 − 1
is the ion charge of the latter.z1 is the effective ion charge and takes the place of the nuclear
charge in the reduction of hydrogenic rate coefficients to compact forms in the statistical
balance equations. Also introduce bundled populations

Nν,nS ≡ N(γνLνSν),nS =
∑

l,L

N(γνLνSν),nlLS (30)
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and the assumption that

Nν,nlLS =
(2L + 1)

(2l + 1)(2Lν + 1)
Nν,nlS =

(2L + 1)
n2(2Lν + 1)

Nν,nS. (31)

The bundling is based on the observation that the largest collision cross-sections are those for
which n = n′ and l = l′ ± 1. For these cases the transition energy is small (effectively zero
for hydrogen or hydrogenic ions) and the cross-sections areso large for electron densities of
relevance for fusion that it is very good approximation to assume relative statistical population
for thelL sub-states. The assumption is weakest for populations of states with core penetrating
valence electron orbitals and we expect spin system breakdown for highnl states progressively
at lower n and l for increasing ion chargez. Thus the above assumptions are appropriate
for light element ions with a more elaboratebundle-(Jp)nl j model more suited to heavy
element ions. The latter will be the subject of a separate paper. In the bundle-nS model,
only equilibrium populations of complete n-shells for a given parent and spin system need be
evaluated, which are the solutions of the statistical balance equations

∞
∑

n′=n+1

[An′→n + Neq
(e)
n′→n + Npq(p)

n′→n]Nν,n′S

+

n−1
∑

n′′=n0

[Neq
(e)
n′′→n + Npq(p)

n′′→n]Nν,n′′S

+ ωSν,S

[

NeN
+
ν α

(r)
n + NeN

+
ν α

(d)
n + N2

eN+ν α
(3)
n

]

= {

∞
∑

n′=n+1

[Neq
(e)
n→n′ + Npq(p)

n→n′′ ] (32)

+

n−1
∑

n′′=n0

[An→n′′ + Neq
(e)
n→n′′ + Npq(p)

n→n′′ ]

+ Neq
(e)
n→ǫ + Neq

(p)
n→ǫ +

∑

ν′

Aa
ν,nS→ν′ }Nν,nS.

N+ν is the population of the parent ionA+z1
ν , Ne is the free electron density andNp the

free proton density,A is the usual Einstein coefficient, q(e) andq(p) denote collisional rate
coefficients due to electrons and protons,α(r)

n , α(d)
n andα(3)

n denote radiative, dielectronic and
three-body recombination coefficients respectively,Aa

ν,nS→ν′ denotes secondary autoionisation

andq(e)
n→ǫ andq(p)

n→ǫ denote collisional ionisation rate coefficients due to electrons and protons
respectively.ωSν,S is a spin weight factor (see equation 33 below). For complex ions, there are
separate systems of equations for each parent and for up to two spin systems (in L-S coupling)
built on each parent and one such equation for each value ofn from the lowest allowedn-shell
n0 for the parent/spin system to∞. The number of spin systems is labelledNsysand the lowest
allowed n-shelln0 = n(r)

0 , the lowest accessible shell by recombination except for doublets
built on the He-like 1s2s 3S parent. In general bare nuclei of other elements are effective ion
projectiles along with protons. We use the word protons hereto represent meanze f f ions with
suitably scaled collisional rate coefficients. These equations are analogous to the equations for
hydrogen and coupling-independent expressions may be usedfor the mainn→ n′ coefficients
providing a suitable spin system weight factor

ωSν,S =
(2S + 1)

2(2Sν + 1)
(33)

is introduced. Table 1 summarises these various parametersfor first period iso-electronic
sequences up to fluorine/neon. There are a number of issues.
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2.1.1. b-factors and lowest levelsFor hydrogenic ions it was advantageous to write the
statistical equations in terms of Saha-Boltzmann deviation factors. This remains true for
complex ions but the definition must be generalised. The deviationbν,nS is defined by

Nν,nS = NeN
+
ν 8













πa2
0IH

kTe













3/2
ων,nS

2ων
exp(Iν,nS/kTe)bν,nS. (34)

That isbν,nS is specified with respect to the parent ion stateA
+z1
ν , and the ionisation potential

Iν,nS is also referred to that parent.a0 is the Bohr radius. Note thatων,nS = ωSν,Sn2ων
whereων = (2Sν + 1)(2Lν + 1) is the parent statistical weight. It is convenient to introduce
cν,nS = bν,nS − 1 and scaled temperatures and densities

θe =

(

kTe

IH

)

1

z2
1

ρe = 25

√

π

3

πa3
0

α3

Ne

z7
1

(35)

with similar forms for the proton temperature and density.α is the fine structure constant. In
these terms the statistical balance equations become particularly suitable for calculation and
resultingGCR coefficients (z-scaled), on aθe/ρe grid, can sustain interpolation of moderate
precision within an iso-electronic sequence.

The parent/spin system model does not distinguish recombined metastables within the
same spin system. For example, consider the 2s22p 2P parent in a B-like like ion recombining
into the singlet system of the C-like ion. The parent/spin system has two metastables,
2s22p2 1D and 2s22p2 1S. We assign the effective ground state as the lowest energy metastable
(2s22p2 1D state in this example) and assign statistically weighted n-shell sub-populations to
resolve between the recombined metastables. There is oftena substantial difference between
the quantum defect of the lowest state itself and the mean quantum defect arising from a
weighted average of the lowest n-shell terms. These choicesimprove the stepwise part of
the collisional-radiative ionisation coefficient within the bundle-nS picture at low density and
allow the bundle-nS model to stand alone, albeit at some reduction in accuracy. Aprecise
solution, as adopted in this paper, is given by the condensation/projection/expansion matrix
transfer of the bundle-nS model onto the low level solution which distinguishes explicitly
between the LS terms in the lowest few quantum shells from thebeginning (see section 2.2).

2.1.2. Auto-ionisation and alternate parentsLet the metastable state which represents
the lowest level of recombined parent/spin systemν,nS be labelled byρ. With parentν,
from a stepwise collisional-radiative point of view it is convenient to refer toν,nS as an
intermediate state system and label it (ν) (2S+1)n. Thus a recombination/stepwise/cascade
pathway may progress from a parentν through the intermediate stateν,nS ending on the
metastableρwith the effectiveGCR recombination coefficient written asACDν→(ν) (2S+1)n;ρ and
likewise a stepwise excitation/ionisation pathway may progress from lowest metastableρ via
intermediate stateν,nS to final ionised ion metastableν with the effectiveGCR ionisation
coefficient SCDρ→(ν) (2S+1)n;ν. The population calculation for a given pathway involves the
excited state population structure connecting the recombining parentν and metastableρ.
However, an alternative parent, which is not the intermediate state parent, can be populated
by autoionisation of excited states above the auto-ionisation threshold. That is, if the parentν
is a metastable and so there exists a lower lying ground state(or possibly other metastable) of
the parent, sayν′. The excited state populations of theν,nS system must include such auto-
ionisation processes. Above the auto-ionisation threshold, and at low electron densities, auto-
ionisation is the dominant loss mechanism. However, the bundle-n auto-ionisation transition
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Figure 3. Bundle-nS population structure for O+4 recombining from and ionising to O+5

at Te = 1.7 × 105 K. (a) b(2s2 1S) 2n factors for doublet bundle-n populations built on the

ground parent 2s2 1S term. The enhanced b-factors atn ∼ 10− 300 is due to dielectronic
recombination. Curves show the progressive suppression of the high populations as the
electron density increases. (b)b(2ssp3P) 2n factors for doublet bundle-n populations built on

the metastable parent 2s2p 3P term. The abrupt transition to underpopulations atn ∼ 4 is due
to secondary Auger transition (LS coupling allowed breakdown type) to the1S parent system.
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probabilities scale asn−5 and are independent of electron density, whereas direct ionisation
loss rates scale asn4 and vary directly with electron density. For high n-shells,direct
ionisation is the dominant loss process. As the electron density increases, direct ionisation
becomes the dominant loss process for all n-shells and auto-ionisation is quenched. The
inclusion of auto-ionisation transition probabilities inthe statistical balance equations leads
to dramatic changes in the population structure as shown in figures 3a, b. In the example,
the populations ofC+1(2s2 1S) 2n are built upon a ground state parent so no auto-ionisation
pathways are accessible from the excited states. If the populations are expressed in terms of
the Saha-Boltzmann b-factors, then they show strong overpopulation of the high n-shells at
low electron density due to dielectronic recombination. Asthe electron density is increased,
the dielectronic recombination influence becomes less due to ionisation of the high n-shell
populations with all the b-factors tending to 1. This behaviour is typical for a recombined
system built on a ground state parent. By contrast, the populations ofC+1(2s2p 3P) 2n, built
upon an excited metastable parent, show powerful depopulation above the auto-ionisation
threshold. As the electron density increases, the direct ionising collisions from the excited
states compete more strongly and the b-factors tend to 1.

The definitions of generalised collisional-radiative ionisation and recombination
coefficients are still relevant but give the recombination rate fromν to ρ and the total loss rate
fromρ (i.e. with no resolution of final parent after ionisation) respectively. The recombination
coefficient is already correctly parent/metastable resolved and needs no further adjustment.
The correct parent resolved (partial) ionisation coefficientsSCDρ→(ν) (2S+1)n;ν′ are derived by
constructing the loss vector from each level. Because the model considers the excited state
populationsNν,nS, direct ionisation only populatesA+z1

ν . The alternative parents are populated
by auto-ionisation. The parent resolved loss vectors are thus given by

Lν,nS→ν = Neqν,nS→ν

Lν,nS→ν′ = Aa
ν,nS→ν′ . (36)

Ionisation pathways and the expected (partial)GCR ionisation coefficients forC+1 + e →
C+2 + e+ e are summarised in table 2. From the point of view of recombination from ν via
intermediate statesν,nS towardsρ, autoionisation allows exit into the alternative parentν′

beforeρ is reached. This gives the newparent cross coupling coefficient XCDν→(ν) (2S+1)n,ν′ .
Note that in applications, it is the coefficients summed over intermediate states which are
required as

XCDν→ν′ =
∑

ν,S

XCDν→(ν) (2s+1)n,ν′ . (37)

Behaviours are illustrated in figures 4a, b.

2.2. The low-level+ projection model

Consider now the set of low levels of an ion. ForGCR studies, we are concerned with complete
sets of low levels associated with the valence electron in the ground and excited n-shells. The
span of the low levels is∆n01 = n1 − n0 with n0 denoting the ground complex valence n-shell
andn1 the highest resolved n-shell. For light elements and spectroscopy which extends up to
the visible range, we seek∆n01 = 1 at minimum and 2 preferably.

The solution for the populations and effective coefficients follow the theory of section
1.2.1 and is numerically straightforward, carried out in the population representation (called
the p−representation), rather thanb−factor orc−factor representations (see equation 34 and
the following lines). The use of thec−factor representation, wherec = b− 1, is essential for
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Figure 4. Bundle-nS generalised collisional-radiative coefficients. Te is the electron
temperature andNe the electron density. (a)C+1

ρ + e → C+2
ν + e + e for different initial

metastableρ, final statesν and intermediate parent/spin systems. Curves are labelled as
SCD(ρ → (ν′) 2S+1n; ν) whereρ = 1 ≡ (2s22p 2P), ρ = 2 ≡ (2s2p2 4P), ν, ν′ = 1 ≡ (2s2 1S)
and ν, ν′ = 2 ≡ (2s2p 3P). (b) O+3[2s2p2 4P] + e → O+3[2s22p 2P] + e parent cross-
coupling coefficients. BothO+2[(2s2p2 4P) 3n] andO+2[(2s2p2 4P) 5n] recombined systems
are included. The autoionisation pathway for the former is allowed in LS-coupling, but for
the latter proceeds only in intermediate-coupling (see section 2.3). Such coefficients follow
broadly the behaviour of recombination coefficients.
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Final parent Intermediate Initial GCR ionis. Type
metastable system metast. coefft.

1 (2s2 1S) 2n 1 SCD1→(1) 2n,1 d
1 (2s2p 3P) 2n 1 SCD1→(2) 2n,1 e-a
2 1 SCD1→(2) 2n,2 d
1 (2s2p 3P) 4n 2 SCD2→(2) 4n,1 e-a (IC)
2 2 SCD2→(2) 4n,2 d

Table 2. Excited state structures and partialGCR ionisation coefficients calculated for the Be-
B series. Ionisation coefficient nomenclature isSCDρ→(ν) (2S+1)n,ν′ whereρ indexes the lowest
metastable of the parent/spin system, withν the parent of the spin system andν′ indexes the
final metastable state. ‘d’ denotes direct ionisation and ‘e-a’ denotes inner shell excitation-
autoionisation contributions.

cancellation error avoidance in computation of the very high level population structure, but is
not necessary for the low levels. The construction of theCi j andr i,ν coefficients is by spline
interpolation in electron temperature of data extracted from archives. Expansion of indirect
projection data and its amalgamation with the resolved direct data is by weight matrices as:

Ci, j = Cdir
i j +

∑

ν,S

ωc
i j :ν,SCindir

n,n′:ν,S

r i,ν = rdir
i +

∑

S

ωr
i:ν,Sr indir

n:ν,S (38)

Li = Ldir
i +

∑

ν,S

ωL
i:ν,SLindir

n:ν,S

wherei ∈ n and j ∈ n′. Introducing the term statistical weight fractions as

ωi:n:ν,S =
(2Si + 1)(2Li + 1)

∑

j∈n(2S j + 1)(2L j + 1)
(39)

then

ωc
i j :ν,S = ωSν,Sωi:n:ν,S for n , n′

ωc
i j :ν,S = ωSν,S

ωr
i:ν,S = ωi:n:ν,S for n = n′ (40)

ωL
i:ν,S = ωSν,S

andωSν,S is as defined in equation 33. Table 3 illustrates theCi j weighting.
In the deduction of spectral emission coefficients between low levels there can be some

confusion. Following the definition of equation 21, in the resolved low level picture, the
emission coefficient is referred to a particular metastable. If metastables are neglected, so
that there is only a ground state and all other levels are viewed as excited, the reference is
to the ground state. On the other hand, a metastable treated as an ordinary excited level will
have a quasistatic population comparable to that of the ground so that

∑

i Ni = Ntot , N1 and
PECtot, j→k = PEC1, j→kN1/Ntot and this is the coefficient which should be used with a ‘stage-
to-stage’ (that is un-generalised picture) ionisation balance. Figure 5 illustrates the behaviour
of low level populations. The graph is of the parameterF

(exc)
i1 from equation 20.
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Index Term Spin Parent Shell n-shell weights
n=2 n=3

1 2s22p 2P 2 1 2 0.25 -
1 2s22p 2P 2 2 2 0.25 -
2 2s2p2 4P 4 2 2 0.786 -
3 2s2p2 2D 2 1 2 0.45 -
3 2s2p2 2D 2 2 2 0.45 -
4 2s2p2 2S 2 1 2 0.05 -
4 2s2p2 2S 2 2 2 0.05 -
5 2s2p2 2P 2 2 2 0.25 -
5 2s2p2 2P 2 2 2 0.25 -
6 2s23s 2S 2 1 3 - 0.0667
6 2s23s 2S 2 2 3 - 0.0667
7 2s23p 2P 2 1 3 - 0.3333
7 2s23p 2P 2 2 3 - 0.3333
8 2p3 4P 4 2 3 0.214 -
9 2s23d 2D 2 1 3 - 0.6
9 2s23d 2D 2 2 3 - 0.6
10 2s2p3s 4P 4 2 3 - 0.1089
11 2s2p3p 4D 4 2 3 - 0.1881
12 2s2p3p 4S 4 2 3 - 0.0297
13 2s2p3p 4P 4 2 3 - 0.1089
14 2s2p3d 4F 4 2 3 - 0.2673
15 2s2p3d 4D 4 2 3 - 0.1881
16 2s2p3d 4P 4 2 3 - 0.1089

Table 3. Fractionising of bundle-nS matrix projection onto low levels for B-like ions with
two resolved n-shells.

2.3. Specific reactions

Energy levels for high bundle-nS levels and their A-values, Maxwell averaged collision
strengths, radiative recombination coefficients, dielectronic recombination coefficients and
ionisation coefficients are generated from a range of parametric formulae andapproximations
described in earlier works (Burgess and Summers, 1976; Summers, 1977; Summers and
Hooper, 1983; Burgess and Summers, 1987; Summers, 2004). High quality specific data
when available are acccessed from archives and substitutedfor the default values. This is a
systematic procedure for dielectronic coefficients (see sections 2.3.1 and 5 below).

For low levels, a complete basis of intermediate coupling energy level, A-value and
scaled Born approximation collision data, spanning the principal quantum shell rangen0 ≤

n ≤ n1 is generated automatically using the Cowan (1981) or Autostructure (Badnell,
1986) procedures. This is called ourbaselinecalculation. These data are merged with
more restricted (in level coverage) but similarly organised highest quality data from archives
where available (e.g. R-matrix data such as Ramsbottomet al (1995)). The data collection
is compressed by appropriate summing and averaging to form acomplete LS term basis
and augmented with comprehensive high quality LS resolved dielectronic recombination,
radiative recombination and collisional ionisation coefficients mapped from archives (see
sections 2.3.1, 2.3.2 and 5 below). The radiative data has its origin in the work of Burgess
and Summers (1987). The final data collection is called aspecific ion file(ADAS data format
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Figure 5. Low level population structure of Ne+7. The excitation part driven by the 1s22s 2S
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6: 4s 2S, 7: 4p 2P, 8: 4d 2D. At low density, the population ratiosNi/NeN1 become flat
tending to the coronal values. At high density the population ratios decrease inversely with
the electron density,Ne, tending to the Saha-Boltzmann values. The intermediate region is the
collisional-radiative regime.

adf04). The detailed content is examined in section 3. Details of state selective dielectronic
recombination and ionisation coefficients are given in the following sub-sections.

2.3.1. State-selective dielectronic recombinationState selective dielectronic recombination
coefficients are required to all resolved low levels and to all bundle-nS shells for the various
initial and intermediate state metastable parentsν for GCR modelling. These are very
extensive data and have been prepared for the presentGCR work through an associated
international ‘DR Project’ summarised in Badnellet al (2003) [hereafter calledDR - paper I]
and detailed in subsequent papers of the series . Based on theindependent particle, isolated
resonance, distorted wave (IPIRDW) approximation, the partial dielectronic recombination
rate coefficientα(d)

ν→i from an initial metastable stateν into a resolved final statei of an ionA+z

is given by

α
(d)
ν→i =













4πa2
0IH

kTe













3/2
∑

p, j

ωp, j

2ων
e−Ec/kTe

×

∑

l Aa
p, j→ν,Ecl

Ar
p, j→i

∑

h Ar
p, j→h +

∑

m,l Aa
p, j→m,Ecl

(41)

whereωp, j is the statistical weight of the (N+1)-electron doubly-excited resonance statej,ων
is the statistical weight of theN-electron target state and the autoionization (Aa) and radiative
(Ar) rates are in inverse seconds. The suffix p is used here to denote a parent ion state.Ec is the
energy of the continuum electron (with angular momentuml), which is fixed by the position
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of the resonances. Note that the parent statesp are excited, that is they exclude the metastable
parentsν′. The code (Badnell, 1986; Badnell and Pindzola, 1989; Badnell,
1997) was used to calculate multi-configuration LS and intermediate coupling energy levels
and rates within the IPIRDW approximation. The code makes use both of non-relativistic and
semi-relativistic wavefunctions (Pindzola and Badnell, 1990) and is efficient and accurate for
both the resolved low level and high-n shell problems. Lookup tables (see section 5;adf09)
are prepared comprising state selective recombination coefficients at a standard set ofz-scaled
temperatures, for each metastable parent, to all LS resolved terms of the recombined ion with
valence electron up ton-shell n(d)

1 ≥ n1 (normally n(d)
1 = 5) and to bundle-nS levels of a

representative set ofn-shells (usually spanningn0 to 999). These bundle-nS coefficients are
simple sums over orbital statesl ∈ n and so apply at zero density. This provides an extensive,
but still economical, tabulation.
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Figure 6. O4+ dielectronic recombination.bp,nl factors as a function of outer electron orbital
angular momentuml for doubly-excited states of O3+ relative to O4+ 2s2 1S for p = 2s2p1P
and 2s3p1P,n = 20,Te = 106 K, Ne = Np, Ze f f = 1. Cases: 1.Ne = 1010 cm−3; 2. Ne = 1012

cm−3; 3. Ne = 1013 cm−3; 4. Ne = 1014 cm−3; 5. Ne = 1015 cm−3. Note the alternative Auger
channel reduction for thep = 2s3p1P graphs.

In DR paper-I, we introduced an associated code, the ‘Burgess–Bethe general program’
BBGP. BBGP is used here as a support function in a model for thel-redistribution of doubly-
excited states which provide a correction to the accurate, but unredistributed, dielectronic data.
The redistributed data (regenerated in the sameadf09format) are normalised to IPIRDW at
zero density. The procedure is similar to that for singly excited systems. ForLS-averaged
levels, the number densities expressed in terms of their deviations,bp,nl from Saha-Boltzmann,
and referred to the initial parentν′, are given by

Np,nl = NeN
+
ν′8













πa2
0IH

kTe













3/2
ωp,nl

ων′
e−E/kTebp,nl . (42)

Thus, in the BBGP zero-density limit, with only resonant capture from theν parent balanced
by Auger breakup and radiative stabilization back to the same parent, we have

bp,nl =















∑

l′ A
a
p,nl→ν′k′ l′

∑

l′ A
a
p,nl→νk′ l′ + Ar

p,nl→ν′,nl















. (43)
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In the extended BBGP model, we include resonant-capture from initial metastables other
than the ground, dipole-allowed collisional redistribution between adjacent doubly-excited
l-substates of the samen by secondary ion- and electron-impact, and losses by ‘alternate’
Auger break-up and parent radiative transition pathways. The population equations for the
l-substates of a doubly-excitedn-shell become

−
(

Neq
(e)
nl−1→nl + Nze f f q

(ze f f)
nl−1→nl

)

Np,nl−1

+















∑

l′=l±1

Neq
(e)
nl→nl′ +

∑

l′=l±1

Nze f f q
(ze f f)
nl→nl′

+

p−1
∑

p1=1

l+1
∑

l′=l−1

Aa
p,nl→p1,κl′

+

p−1
∑

p1=1

Ar
p,nl→p1,nl

















Np,nl

−
(

Neq
(e)
nl+1→nl + Nze f f q

(ze f f)
nl+1→nl

)

Np,nl+1

= Ne

M
∑

ν=1

l+1
∑

l′=l−1

qc
ν,κl′→p,nlNν +

P
∑

p1=p+1

Ar
p1,nl→p,nlNp1,nl . (44)

qc denotes resonance capture coefficients. M denotes the number of parent metastables
which are the starting point for resonance capture whereasP denotes the number of true
excited parent states. Ion impact redistributive collisions are effective and are represented
in the equations asze f f ion contributions. The density corrected bundle-nS recombination
coefficients are then

α
(d,IPIRDW)
ν′→ν′,nS (Ne) = α

(d,IPIRDW)
ν′→ν′,nS (Ne = 0)

∑

l α
(d,BBGP)
ν′→ν′,nl (Ne)

∑

l α
(d,BBGP)
ν′→ν′,nl (Ne = 0)

. (45)

Details are given inDR paper-I. Figure 6 shows the effects of redistribution of the doubly
excitedbp,nl factors in the recombination ofO+4.

Autoionisation rate calculations in LS coupling exclude breakup of non-ground
metastable parent based ‘singly excited’ systems by spin change. Such breakup only occurs
in intermediate coupling but cannot be ignored for a correctpopulation assessment even in
light element ions. These rates are computed in separate intermediate coupling dielectronic
calculations. These rates are main contributors to the parent metastable cross-coupling
identified earlier (cf. theO+2[(2s2p2 4P) 5n] intermediate states in figure 4b leading back
to theO+3(2s22p 2P) parent).

2.3.2. State-selective ionisationDirect ionisation coefficients for excited n-shells in bundle-
nS population modelling are evaluated in the exchange-classical-impact parameter (ECIP)
approximation (Burgess and Summers, 1976). The method which merges a symmetrised
classical binary encounter model with an impact parameter model for distant encounters is
relatively simple and of moderate precision, but has a demonstrated consistency and reliability
for excited n-shells in comparison with more eleborate methods. There is a higher precision
requirement for state selective ionisation from metastable and low levels. Such ionisation
includes direct and excitation/autoionisation parts, but the latter only through true excited
parents. Stepwise ionisation is handled in the collisional-radiative population models. There
are extensive ionisation cross-section measurements, butthese are in general unresolved and
so are of value principally for renormalising of resolved theoretical methods. The most
powerful theoretical methods used for excitation, namely R-matrix with pseudostates (RMPS)
(Bartschat and Bray, 1996; Ballanceet al , 2003) and convergent-close-coupling (CCC) (Bray



H.P. Summers et al. Ionisation state. I. 22

and Stelbovics, 1993), have some capability for ionisation, but at this stage are limited to
very few electron systems as is the time-dependent-close-coupling (TDCC) (Pindzola and
Robicheaux, 1996; Colganet al , 2003) ionisation method. ForGCR calculations, we have
relied on the procedures of Summers and Hooper (1983) for initial and final state resolution
of total ionisation rate coefficients and on the distorted wave approximation. The distorted
wave method is our main method for extendedGCR studies for many elements and most
stages of ionisation. RMPS and TDCC studies are directed mostly at the neutral and near
neutral systems where the distorted wave method is least reliable (Lochet al , 2005). We
use the configuration average distorted (CADW) wave approach of Pindzola, Griffin and
Bottcher (1986). It has reasonable economy of computation while allowing access to complex,
multi-electron ions, highly excited states, excitation/autoionisation and radiation damping. It
expresses the configuration averaged excitation cross-section for

(n1l1)q1+1(n2l2)q2−1k̄i l i → (n1l1)q1(n2l2)q2k̄f l f (46)

as

σ̄excit =
8π

k̄3
i k̄f

(q1 + 1)(4l2 + 3− q2)

∑

l i ,l f

(2l i + 1)(2l f + 1)M2 f ;1i (47)

and the configuration averaged ionisation cross-section for

(n1l1)q1+1k̄i l i → (n1l1)q1k̄elek̄f l f (48)

as

σ̄ionis =
32π

k̄3
i k̄ek̄f

(q1 + 1)

∑

l i ,le,l f

(2l i + 1)(2le + 1)(2l f + 1)Me f;1i (49)

whereM2 f ;1i are squared two-body Coulomb matrix elements, ¯σ denotes the average cross-
section and̄ki , k̄f andk̄e denote average initial, final and ejected electron momenta respectively
in the configuration average picture. The configuration average direct ionisation cross-
sections and rate coefficients may be unbundled back to resolved form using angular factors
obtained by Sampson and Zhang (1988). Note that the excitations described here are to auto-
ionising levels and so resolved Auger yields may be used which are the same as those in the
dielectronic calculations of section 2.3.1 above. In fact the ionisation coefficient calculation
results are structured and archived in ADAS (formatadf23) in a manner very similar to state
selective dielectronic recombination. Extensive studieshave been carried out on light and
heavy elements (Colganet al , 2003; Lochet al , 2003).

3. Fundamental atomic data for low levels of ions

For bundle-nSmodelling, the expected fundamental data precision is. 30% for excitation and
ionising collisional rate coefficients,. 10% for A-values and state selective recombination
coefficients and. 1% for energies.

For low level modelling many sources are used. A rating is given for the classes
of fundamental data for the ions of carbon, oxygen and neon intable 4 which is based
on the following considerations. For energy levels, categories area spectroscopic,b .
0.5% andc . 1.0%. Categoryc is anticipated from ab initio multi-configuration structure
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Ion E A Υi j α(r) α(d) S
. ∆n = 0 ∆n > 0

C0 a b b b,c b b b
C+1 a b b b,c b b b
C+2 a b a,b b,c b b b
C+3 a a,b b b,c b b b
C+4 a a b b,c b b b
C+5 a a b b b b b
O0 a b,c b b b b b
O+1 a b,c b b b b b
O+2 a b,c a,b b b b b
O+3 a b a a b b b
O+4 a b a a b b b
O+5 a b b b b b b
O+6 a a b b,c b b b
O+7 a a b b,c b b b
Ne0 a b,c b c b b b
Ne+1 a c b b b b b
Ne+2 a b a b b b b
Ne+3 a b a b b b b
Ne+4 a b a b b b b
Ne+5 a b a b b b b
Ne+6 a b a b b b b
Ne+7 a b b b b b b
Ne+8 a a b c b b b
Ne+9 a a b c b b b

Table 4. Fundamental data precision categorising for the ions of carbon, oxygen and neon.
The definition of the categories and justification of the categories for Ne+6 are given in the
text.

calculations,b from such calculations with extended optimising anda reflects direct inclusion
of experimental energies from reference sources. For A-values, categories area . 5%, b
. 10% andc . 25%. Categoryc is anticipated from our baseline calculations,b from
optimised multi-configuration structure calculations with extended optimising anda from
specific studies in the literature. For electron impact Maxwell averaged collision strengths,
Υ, the categories area . 10%, b . 20% andc . 35%. Categoryc is from our baseline
calculations,b from distorted wave calculations anda from specific R-matrix calculations,
equivalent methods or experiment. For radiative recombination, the categories area . 5%,b
. 10% andc. 50%. Categoryc is from scaled methods using hydrogenic matrix elements,b
from distorted wave one-electron wave functions in an optimised potential using spectroscopic
energies anda from specific R-matrix calculations and experiment. Category b is the baseline
in ADAS. For dielectronic recombination, the categories are a . 20%, b . 30% andc .
45%. Categoryc is from BBGP approximations,b from LS-coupled calculations using
Autostructure from the DR Project anda from IC-coupled calculations using Autostructure
with parent and lowest resonance energy level adjustments from the DR Project. Categoryb is
the baseline in ADAS. It is to be noted that the theoretical relative precision which is consistent
with the variation between the three categories is 15% better but dielectronic recombination
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comparisons with experiment still show unexplained discrepancies at the 20% level so the
present categories are safe. For ionisation, the categories area. 10%,b. 25% andc. 40%.
Categoryc is from ECIP approximations,b from configuration average with angular factor
term resolution anda from RMPS, TDCC calculations and experiment. Categoryb is the
baseline in ADAS.

As indicated in section 2.3, these various data are assembled in anadf04file which is
sufficient to support the primary low-level population calculation. The tabulations are at a set
of temperatures arising from a fixed set of z-scaled temperatures (see section 2.1.1) which
spans the full range to asymptotic regions of reaction data.Collision data are converted
to these ranges usingC-plots (Burgess and Tully (1992) and this procedure also flags data
errors or queries. The precision of the specific ion file determines the achievable precision
of all derived populations, emissivities and collisional-radiative coefficients (Whitefordet al ,
2005; O’Mullaneet al , 2005). The assembling of data in theadf04is systematic and orderly.
A comment section at the end of the file details the assembly steps, implementer, codes
used and dates. This includes baseline and supplementationfiles, merging, LS compression,
dielectronic recombination data inclusion etc. Also thereis extended detail of orginal data
sources and a history of updates. A givenadf04 file represents a ‘snapshot’ of the state
of available knowledge at the time. It is subject to periodicreview and ADAS codes (see
section 5) are designed to enable easy reprocessing of all derived data following fundamental
data update. The grading for each ion given in table 4 is justified and supported by the
comments from itsadf04file. A summary from Ne+6 is given in the following paragraphs
in illustration. For Ne+6, the low levels span 44 terms, including up to then = 5 shell
built on the parent 1s22s 1S and n = 3 shell built on the 1s22p 1S. Only the 1s22s 1S
parent is treated as a metastable from theGCR point of view. The intermediate coupled
baseline data set iscopmm#10-ic#ne6.datwith preferred supplementary energy A-value and
Υ data merged fromcopjl#be-ic#ne6.dat. Ionisation potentials and energy levels are from the
NIST Standard Reference Database apart from 2p3p 1S (Kelly, 1987) and 2p3d 3F levels by
(Ramsbottomet al , 1995). The categorisation isa. A-values were drawn from the Opacity
Project( Opacity Project Team, 1996; Tullyet al , 1991 ) as justified (for N IV and O V) by
Wiese, Fuhr and Deters (1996) and supported/adjusted by. 3% by Fleminget al (1996a,b),
Jönssonet al (1998), Froese Fischer, Godefeid and Olsen (1997), Froese Fischer, Gaigalas
and Godefried(1997), Nussbaumer and Storey (1979), Sampson, Goett and Clark (1984) and
Ramsbottomet al (1995). Categoryb is safe.Υs are taken from Ramsbottomet al (1995).
These are for a 26 LS eigenstate multichannel R-matrix calculation. The categories assigned
area andb. Radiative and dielectronic recombination and ionisationall follow the baselines
in ADAS, that is categoriesb although the summed and averaged ionisation rate coefficient
(over metastables) is normalised to experiment.

4. Illustrative results

Figure 7 showsPEC coefficients for the C II 858 Å spectrum line. The coefficients depend on
both electron temperature and electron density in general.A common practice in spectral
analysis is to observe principally the strongest resonanceline of an ion. Such emission
is driven largely from the ground state (figure 7a) and because of the large A-value, the
density sensitivity occurs at relatively high density. Thus such resonance line emission at
moderate to low densities mostly reflects temperature and the distribution of the ionisation
stages. Comparison in near equilibrium ionisation balanceplasmas of line ratios from the
same ion, by contrast, is mostly directed at electron density and relies on the presence of
metastables and spin changing collisional processes to confer the sensitivity. As shown
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Figure 7. Excitation and recombination photon emissivity functions,PECs, driven by the
ground metastables, are shown for the C II 858 Å spectrum line.The coefficients depend
on both electron temperature and electron density. The (exc) part decreases at high electron
density due principally to stepwise ionisation losses fromthe upper level of the transition.
The behaviour of the (rec) part shows both suppression of dielectronic recombinationat
moderate density and then enhancement due to three-body recombination at high density and
low temperature.
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Figure 8. Generalised collisional-radiative recombination coefficients for O+4 + e→ O+3 (a)
ACD(2s2 1S→ 2s22p 2P) (b) ACD(2s2 1S→ 2s2p2 4P) (c) ACD(2s2p3P→ 2s2p2 4P)
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earlier, the balance of the dominant ground and metastable populations is disturbed in dynamic
plasmas and so density sensitivity may be modified by the dynamic state. The distinction of
the metastable drivenPEC in GCR modelling, as illustrated in figure 7b, allows more complete
diagnostic study and the possibility of separation of the two effects. In strongly recombining
plasmas (most commonly photo-ionised astrophysical plasmas) the direct contribution of
recombination to the emission may dominate the excitation part. ThePEC

(rec), as illustrated
in figure 7c, is then required. In the fusion context, multi-chordal spectral observations are
important for the study of impurity transport especially near sources. Visible and quartz UV
observations are convenient and this places a requirement for PECs from higher quantum
shells. It is this primarily which defines the span of ourlow-levelsfor population modelling.
Emission from highern-shells is significantly affected by cascading from yet higher levels.
The full machinery of projection as described in section 2.1is necessary for our global
ambition of 20% precision for emissivity coefficients.

Figure 8 illustrates theGCR recombination coefficients. At low electron density,
radiative and dielectronic recombination dominate. For capture from metastables, alternate
Auger branching can largely suppress the dielectronic partof the surfaces. Thus figure 8a
shows the characteristic exponential rise at the temperature for excitation of the main parent
(core) transition of dielectronic recombination and then the subsequent fall-off (as∼ T−3/2

e ),
in contrast with 8c. At moderate densities, suppression of the high n-shell populations,
principally populated by dielectronic recombination, through re-ionisation occurs and the
coefficient falls in the dielectronic recombination region. At very high density, three-body
recombination becomes effective, preferentially beginning at the lower electron temperatures.
It is evident that recombination is less effective from the metastable at relevant ionisation
balance temperatures. Models which ignore the role of capture from the metastable parent
(which may be the dominant population) can lead to substantial errors in recombination
coefficients, while simply excluding all capture from the metastable cannot deliver the
precision sought for current modelling. For light elementsin astrophysical plasmas, the zero-
density coronal assumption for the recombination coefficient is still frequently made. This
cannot be justified even at solar coronal densities.

Figure 9 illustrates theGCR ionisation coefficients. At low electron density, the
coefficient is dominated by direct ionisation, including excitation/auto-ionisation, from the
driving metastable. Relatively high electron densities are required before the stepwise
contribution begins. It is primarily the excitation to, andthen further excitation and ionisation
from, the first excited levels which controls this. The ground and metastable resolved
coefficients both show the same broad behaviour as the usual (stageto stage) collisonal-
radiative coefficient, tending to a finite limit at very high density. It is to be noted that the
XCD coefficients are required to be able to construct a meaningful stage to stage collisional-
radiative ionisation coefficient from the generalised progenitors. It remains the casethat most
plasma modelling (certainly in the fusion area) is not adjusted to the use of the generalised
coefficients as source terms. Reconstruction of stage to stage source terms (at the price of a
reduction in modelling accuracy) from the generalised coefficients is still is a requirement and
is addressed more fully in section 5.

The generalised coefficients may be used to establish the equilibrium ionisation balance
for an element in which the dominant ground and metastable populations are distinguished,
that is the fractional abundances
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: σ = 1, · · · ,Mz; z= 0, · · · , z0 (50)
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Figure 9. Generalised collisional-radiative ionisation coefficients for O+3 + e→ O+4 + e+ e
(a)SCD(2s22p 2P→ 2s2 1S) (b) SCD(2s22p 2P→ 2s2p3P)

whereMz is the number of metastables for ionisation stagezand

N[tot] =

z0
∑

z=0

N[z] =

z0
∑

z=0

Mz
∑

σ=0

N[z]
σ (51)

in equilibrium. Writing N[z] for the vector of populationsN[z]
σ , the equilibrium population
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Figure 10. Equilibrium ionisation balance of oxygen (a) Equilibrium fractional abundances
of metastables from the generalised collisonal-radiative (b) The total radiated power function
showing the components driven by the different metastables (c) TheGTN function for the O II
629.7 Å line showing the contributions parts from the different metastables of thez-times and
(z+ 1)-times ionised ions.
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fractions are obtained from solution of the matrix equations.
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These in turn may be combined with thePLT andPRB to obtain the equilibrium radiated
power loss function for the element as

P[tot] =

z0
∑

z=0

P[z]

(

N[z]

N[tot]

)

equil

=

z0
∑

z=0

Mz
∑

σ=0

(PLT
[z]
σ + PRB

[z]
σ )













N[z]
σ

N[tot]













equil

. (53)

The equilibrium fractional abundances and equilibrium radiated power function are illustrated
in figure 10. It is useful at this point to draw attention to emission functions which combine
emission coefficients with equilibrium fractional abundances. They are commonly used in
differential emission measure analysis of the solar atmosphere(Lanzafameet al , 2002)
where they are calledG(Te) functions. In solar astrophysics, it is assumed that theG(Te)
are functions of the single parameterTe (either from a zero-density coronal approximation or
by specification at fixed density or pressure) and usually theabundance of hydrogen relative to
electronsNH/Ne is incorporated in the definition. For finite density plasmas, in the generalised
collisonal-radiative picture, we defineGTN functions, parameterised byTe andNe as

GTN
[z]
j→k =

∑

σ

PEC
[z](exc)
σ, j→k
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+
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. (54)

These are strongly peaked functions inTe. The precision of the present modelling and data,
including the full density dependence, is in principle sufficient to allow bivariate differential
emission measure analysis (Judgeet al , 1997) although this remains to be carried out. The
general behaviour of aGTN function is illustrated in figure 10c.

5. Computations and archiving derived data for applications

The organisation of the main calculations and data flow is shown in figure 11. The calculations
executed for the paper have been implemented in general purpose codes and attention has
been given to the precise specification of all data sets and the machinery for accessing and
manipulating them. This includes initial data, intermediate and driver data as well as the final
GCR products and follows ADAS Project practice. Population structure modelling requires
an initial input dataset of energy levels, transition probabilities and collisional rates of ADAS
data formatadf04 which is complete for an appropriate designated set of low levels. For
the light elements, best available data were assembled and verified as described in section 3.
These data are substitutes for more moderate quality, but complete,baselinedata prepared
automatically (seeGCR - paper III). Theadf04files are required for LS-terms. In practice,
we find it most suitable to prepare the data for LSJ levels and then bundle back to terms. For
GCR modelling, state selective recombination and ionisation coefficients must be added to
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Figure 11. Schematic of computational steps in production of generalised collisonal-radiative
data. Data sets are shown by circular outline and program elements by rectangles. The key
members have been incorporated and assigned names in the ADAS system.

form the fully specifiedadf04file. The LS-coupled dielectronic coefficients are mapped in
from very large comprehensive tabulations of data formatadf09prepared as part of theDR
Project (Badnellet al ,2003). The resultingadf04files are the ADAS preferred data sets and
are available for elements helium to neon.

The two population codes, called ADAS204 and ADAS208, work together. ADAS204
is the bundle-nS model. Data on the metastable parent structure, quantum defects, auto-
ionisation thresholds and autoionsation rates are required. These data may be extracted from
theadf04files and it has been helpful to make the driver dataset preparation automatic. High
quality shell selective dielectronic data are essential and this is part of the provision in the
adf09 files described in the previous paragraph. ADAS204 providescomplete population
solutions, but extracts from these solutions the condensedinfluence on the low n-shells, as
projection matrices, for connection with the calculations of ADAS208. It is to benoted that
the main on-going development is refinement of atomic collision rates between the key low
levels. The projection matrices are not subject to frequentchange and so are suitable for long-
term archiving (adf17). ADAS208 is the low-level resolved population model whichdelivers
the final data for application. It draws its key data from the fully configuredadf04file and
supplements these with projection data. The evaluation of the population structure takes place
at an extended set ofz-scaled electron temperatures and densities (see section 2) and this
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means that the resultingGCR coefficient data are suited to interpolation along iso-electronic
sequences. Thus the initial tabulation ofGCR coefficients is in iso-electronic datasets. It is
convenient to implement the gathering and mapping from iso-electronic to iso-nuclear in a
separate step, which also supports the merging back to the unresolved stage-to-stage picture
if required. The production ofPEC andSXB coefficients is directly to iso-nuclear oriented
collections. The number ofPECs from the population calculations can, in principle, be very
large. We restrict these by a threshold magnitude and to particular important spectral regions.
It is straightforward to rerun ADAS208 to generatePEC or SXB coefficients alone in spectral
intervals of one’s choice. The separation of the ADAS204 andADAS208 tasks and the ease
of modifying data within anadf04file means that ‘what-if’ studies on the sensitivity of the
derived data to fundamental data uncertainly can readily carried out. Special ADAS codes
enable detailed study of cumulative error and dominating sources of uncertainty such that
error surfaces, for example for aPEC as a function of electron temperature and density, may
be generated. Such error (uncertainty) analysis for theoretical derived coefficients and its
utilisation in the confrontation with diagnostic experiments is the subject of a separate work
(see O’Mullaneet al , 2005).

6. Conclusions

The requirements for precise modelling of spectral emission and the relating of ionisation
stages in thermal plasmas have been considered. Collisional-radiative methodologies have
been developed and extended to enable the full role of metastables to be realised, so that
this generalised (GCR) picture applies to most dynamically evolving plasmas occurring in
magnetic confinement fusion and astrophysics.

The procedures are valid up to high densities. The studies presented in the paper explore
the density effects in detail within theGCR picture and show that the density dependencies of
excited ion populations and of effective rate coefficients cannot be ignored.

Specific results are presented for light elements up to neon and the computations are
carried out in an atomic basis of terms (LS-coupled). Such modelling will remain sufficient
up to about the element argon, beyond which a level basis (intermediate coupling) becomes
necessary. Heavier elements will be examined in further papers of this series.

Considerable attention has been given to the generation andassembly of high quality
fundamental data in support of theGCR modelling. Also datasets of fundamental and derived
data have been specified precisely and codes have been organised following the principles of
the ADAS Project. The product of the study is the preferred ADAS data for the light element
ions at this time.
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