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We describe a mathematical model of buoyancy-driven flow and solute transport in
a saturated porous medium, the porosity and permeability of which evolve through
precipitation and dissolution as a mineral is lost or gained from the pore fluid.
Imposing a vertically varying equilibrium solubility creates a density gradient which
can drive convective circulation. We characterise the onset of convection using linear
stability analysis, and explore the further development of the coupled reaction–
convection system numerically. At low Rayleigh numbers, the effect of the reaction–
permeability feedback is shown to be destabilising through a novel reaction–diffusion
mechanism; at higher Rayleigh numbers, the precipitation and dissolution have
a stabilising effect. Over longer time scales, reaction–permeability feedback triggers
secondary instabilities in quasi-steady convective circulation, leading to rapid reversals
in the direction of circulation. Over very long time scales, characteristic patterns of
porosity emerge, including horizontal layering as well as the development of vertical
chimneys of enhanced porosity. We discuss the implications of these findings for more
comprehensive models of reactive convection in porous media.

Key words: convection in porous media, geophysical and geological flows

1. Introduction
The circulation of fluid through porous rock, under the influence of buoyancy

forces associated with thermal or solutal gradients, is believed to occur in many
geological settings (Phillips 1991, 2009; Nield & Bejan 2006), although it has been
directly observed only occasionally (e.g. Stevens et al. 2009). Such fluid generally
contains a rich cocktail of dissolved minerals: as the temperature, pressure and local
rock chemistry change, the solubilities of these minerals also change and they may
be precipitated onto or dissolved from the rock matrix. The role of such processes in
controlling the structure of rocks and the characteristic patterns of mineral deposition
is still not fully understood.

The theoretical study of convection in a porous medium dates back to the stability
analyses of Horton & Rogers (1945) and Lapwood (1948). It is similar to the
pure-fluid convection problem first investigated by Bénard and Rayleigh in the early
20th century, but it has some distinctive features. In particular, the presence of a
porous matrix allows dissolved chemical species to be lost or gained by the fluid
throughout the medium, instead of merely at the boundaries. Therefore, the models
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developed to describe reactive convection in a porous medium (e.g. Steinberg &
Brand 1983, 1984; Gatica, Viljoen & Hlavacek 1989; Viljoen, Gatica & Hlavacek
1990; Pritchard & Richardson 2007) can exhibit different mathematical behaviour
from those developed to describe reactive convection in a pure fluid layer (e.g. Bdzil &
Frisch 1971, 1980; Wollkind & Frisch 1971; Gutkowicz-Krusin & Ross 1980). Apart
from the mathematical interest of these models, they also have a range of applications
in environmental and geological fluid dynamics. These include the dolomitisation
of carbonate platforms (Kaufman 1994), soil salinisation (Gilman & Bear 1994;
Wooding, Tyler & White 1997), heat transfer in geothermal reservoirs (Oldenburg &
Pruess 1998) and the formation of uranium ore deposits (Raffensperger & Garven
1995a ,b).

A particular feature of reactive flow in a porous medium, including convective flow,
is the possibility of feedback as the exchange of minerals alters the permeability of the
medium, which in turn alters the patterns of flow: inhomogeneous permeability may
even control whether large-scale flow is able to occur (Sharp & Shi 2009). A general
discussion of flow–reaction feedback has been presented by Phillips (1991, 2009), and
some specific problems have received particular interest. Perhaps the most thoroughly
studied topic is the ‘reaction–infiltration’ or ‘wormholing’ instability (see e.g. Chadam
et al. 1986; Hinch & Bhatt 1990; Chadam et al. 2001; Zhao et al. 2008). In this
process, a dissolution front moving through a porous medium undergoes fingering
as the flow focuses into relatively permeable channels, further dissolving the medium
in these channels and thus enhancing their permeability still further. Other flow–
reaction processes that have received attention from modellers include the self-sealing
of fractures in hydrothermal upflow zones (Lowell, Cappellen & Germanovitch 1993),
the propagation of gravity currents through a reactive medium (Raw & Woods 2003;
Verdon & Woods 2007), the dynamics and thermodynamics of magma chambers
(Hallworth, Huppert & Woods 2005), the cementation of sandstones (Cochepin
et al. 2008), and, in recent years, the geochemical sequestration of carbon dioxide
(Ennis-King & Paterson 2007). There are also some parallels to be drawn with the be-
haviour of mushy layers (Worster 1997), although the model we will consider differs in
some key respects from that of an ideal mushy layer: we will discuss this further in § 2.

The possibility that convective fluid circulation in geological formations might
experience flow–reaction–permeability feedback has received relatively little attention
from mathematical modellers. An exception is the work of Bolton, Lasaga & Rye
(1996, 1997, 1999), who constructed a detailed mathematical model of buoyancy-
driven flow in a quartz–silicic acid system. Their main interest was in how reaction–
convection feedback modified rocks with pre-existing permeability structures, such
as fracture zones and fault zones. They found extremely complicated patterns of
coupled flow and transport, in which both thermosolutal effects and the finite time
scale associated with reactions appeared to be important.

While models as complicated as those of Bolton et al. are undoubtedly required
to describe real geological systems, there is also a case for studying more heavily
idealised models to identify the key mechanisms and interactions involved in reactive
convection. This was the approach taken by Pritchard & Richardson (2007) in a
precursor to the present study, which investigated the effect of a thermally controlled
reaction on thermosolutal convection in a porous layer and concluded that it could
have significant consequences for the onset of convection. Although Pritchard &
Richardson (2007) noted the possibility of long-term changes to the porous medium
as a result of this convection, they did not pursue the point further. The present study
represents a first step in this direction.
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Figure 1. Schematic diagram of the system under consideration.

We consider the simplest model in which reaction–convection interactions may
occur: convection driven solely by solutally induced density effects, in which
dissolution and precipitation act to restore the local solute concentration to some
local equilibrium value that varies with depth in the medium. This is a simple model of
thermally controlled solubility in a system in which rapid thermal diffusion preserves
a uniform geothermal temperature gradient; perhaps less realistically, it could also
be interpreted as representing vertically varying mineralogy. We reiterate, however,
that it is intended as an idealisation and not as a detailed geochemical model of any
particular system.

In § 2 we present a model of flow and transport in a porous medium with evolving
porosity. We then, in § 3, carry out a linear stability analysis of the onset of convection,
paying particular attention to the permeability feedback effects which enter on a
longer time scale than that of the flow. In § 4, we validate the stability analysis using a
numerical model and carry out a sequence of numerical experiments to investigate the
longer-term behaviour of the system. In particular, we seek to identify and interpret
particular feedback mechanisms which control the evolution of the porous matrix.
Finally, in § 5 we summarise our results and draw some general conclusions.

2. Model description

We consider an initially homogeneous and isotropic porous layer of depth ĥ with
solutal mass concentrations Ĉ0 and Ĉ1 imposed at the bottom and top, respectively
(figure 1). The bottom and top layers are presumed to be impermeable, and we impose
chemical equilibrium at the boundaries.

We take x̂ and ẑ as the horizontal and vertical coordinates, respectively, with ẑ

increasing upwards. Making a Boussinesq approximation, the flow is governed by the
equations of mass conservation and Darcy’s law (Phillips 1991, §§ 2.5 and 2.6),

∂φ

∂t̂
+ ∇̂ · û = 0, (2.1)

û = −K̂(φ)

µ̂
∇̂p̂ − K̂(φ)

µ̂
ρ̂f (Ĉ)ĝez, (2.2)

where K̂(φ) is the permeability which depends on the porosity φ, µ̂ is the fluid
viscosity, ρ̂f is the fluid density, and û is the two-dimensional fluid transport velocity.
Throughout this study, a caret will denote a dimensional variable, while dimensionless
variables are unadorned.
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The permeability K̂(φ) is given, following Phillips (1991, § 4.7), by

K̂(φ) = K̂0

(
φ

φ0

)b

, (2.3)

where K̂0 is the initial permeability, φ0 is the initial porosity, and the exponent b

typically lies between 2 and 3 inclusive. We will take b =2 throughout.
The transport of solute is described by the advection–diffusion equation

∂(φĈ)

∂t̂
+ ∇̂ · (ûĈ) = ∇̂ · (φκ̂C∇̂Ĉ) + k̂(φ)(Ĉeq(ẑ) − Ĉ). (2.4)

Here Ĉ represents the mass concentration of solute in the fluid, and Ĉeq(ẑ) is the
equilibrium concentration of solute, which we assume varies linearly in ẑ; κ̂C is the
molecular diffusivity of the solute through the fluid. Note that the choice of a linearly
varying equilibrium concentration will permit us to define a non-evolving diffusive
base state for the system.

The reaction rate k̂(φ) � 0 implicitly depends on the surface area of the rock exposed
to the fluid within the pore network. A detailed model of this dependency requires
knowledge of the pore-scale geometry and its evolution. As such information is not
generally available, we employ the minimal assumption that the reaction rate should
reduce to zero when either there is no rock or there are no pores. Therefore, for
exploratory purposes we take

k̂(φ) = k̂ref φ(1 − φ), (2.5)

where k̂ref is some reference reaction rate which we define using the initial porosity

φ0 and initial reaction rate k̂0, so

k̂0 = k̂ref φ0(1 − φ0). (2.6)

The porosity evolution is governed by

∂φ

∂t̂
=

k̂(φ)

ρ̂s

(Ĉeq(ẑ) − Ĉ), (2.7)

where ρ̂s is the solid matrix density. Equations (2.5)–(2.7) are of a similar form to
those used in the study of dissolution fronts in fluid-saturated porous media (Chadam
et al. 1986, 2001; Zhao et al. 2008). As these studies demonstrate, different forms for
the dependence of reaction rate on porosity could readily be employed but have not
been shown to be of critical importance.

Finally, we take the density to be given by the linear approximation

ρ̂f (Ĉ) = ρ̂0[1 + β̂C(Ĉ − Ĉ0)]. (2.8)

We seek a steady-state base solution in which û = 0 and there is no lateral variation.
We then find a linear distribution of solute concentration,

Ĉs(ẑ) = Ĉ0 + (Ĉ1 − Ĉ0)
ẑ

ĥ
= Ĉeq(ẑ). (2.9)

Some key differences between this model and that of convective flow in an ideal
mushy layer (Worster 1997) should be noted at this point. The most obvious difference
is the boundary conditions, as mushy layers are typically bounded between pure solid
and liquid phases; other differences include the relative insignificance of latent heat,
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the inclusion of solutal diffusion, and the dependence of reaction rate on porosity
which arises because the reaction involves the direct exchange of solute with the
solid matrix. Furthermore, in the mushy-layer problem a thermodynamic constraint
links the thermal and solute fields, whereas since we consider a system with a fixed
temperature gradient, the thermal field is effectively decoupled from the dynamics.
Thus, although we may expect loose analogies with mushy-layer convection, we may
also expect distinct behaviour in the present model.

2.1. Non-dimensionalisation

Equation (2.4) may be simplified using (2.1) to obtain

φ
∂Ĉ

∂t̂
+ (û · ∇̂)Ĉ = κ̂C∇̂ · (φ∇̂Ĉ) + k̂(φ)(Ĉeq(ẑ) − Ĉ). (2.10)

A further simplification, following most previous workers on the subject (e.g.
Bolton et al. 1999; Phillips 2009), is to neglect the time derivative in (2.1). This is
valuable because it permits the use of a streamfunction formulation for velocity. It
is straightforward, although laborious, to show that this affects the linear stability of
the system only at order δ2, where δ � 1 is defined below.

We now define dimensionless variables as

x̂ = ĥx, û =
κ̂C

ĥ
u, t̂ =

φ0ĥ
2

κ̂C

t, p̂ =
κ̂Cµ̂

K̂0

p, Ĉ = Ĉ0 + (Ĉ1 − Ĉ0)C, (2.11)

to obtain the dimensionless governing equations

∇ · u = 0, (2.12)

∇p = −
(

φ

φ0

)−b

u − RCCez − RC

β̂C(Ĉ1 − Ĉ0)
ez, (2.13)

φ

φ0

∂C

∂t
+ (u · ∇)C = ∇ · (φ∇C) − k0

φ(1 − φ)

φ0(1 − φ0)
(C − z), (2.14)

∂φ

∂t
= −δk0

φ(1 − φ)

1 − φ0

(C − z), (2.15)

with the boundary conditions

w = 0 and C = z at z = 0 and z = 1. (2.16)

The dimensionless parameters k0, δ and RC are defined, respectively, as

k0 =
ĥ2k̂0

κ̂C

, δ =
(Ĉ1 − Ĉ0)

ρ̂s

, RC =
K̂0ρ̂0ĝĥβ̂C(Ĉ1 − Ĉ0)

µ̂κ̂C

. (2.17)

The parameter RC is a solutal Rayleigh number, positive values of which correspond
to an unstable solutal density gradient. The parameter k0 > 0 is a Damköhler number
which provides the dimensionless reaction rate for the system: note that estimates for
geochemical reaction rates may vary by many orders of magnitude (Phillips 2009,
§ 2.8). Finally, δ is a matrix evolution rate, which may be assumed to be much less
than unity since mass concentrations of solute are typically much smaller than the
density of the solid mineral (Phillips 2009, § 2.8).
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3. Linear stability analysis
We define infinitesimal perturbation variables, denoted by a dash, as

u′ = u, C ′ = C − z, p′ = p +
1

2
RCz2 +

RC

β̂C(Ĉ1 − Ĉ0)
z, φ′ = φ − φ0. (3.1)

By neglecting second-order quantities, we may simplify (2.12)–(2.15) to obtain

∇ · u′ = 0, (3.2)

∇p′ = −u′ − RCC ′ez, (3.3)

∂C ′

∂t
+ w′ = φ0∇2C ′ +

∂φ′

∂z
− k0C

′, (3.4)

∂φ′

∂t
= −δk0φ0C

′. (3.5)

The boundary conditions are given by

w′ = 0 and C ′ = 0 at z = 0 and z = 1. (3.6)

We seek solutions of the form

u′ = U (z)eimxeσ t , w′ = W (z)eimxeσ t , p′ = P (z)eimxeσ t ,

C ′ = χ(z)eimxeσ t , φ′ = Φ(z)eimxeσ t ,

}
(3.7)

where the real parts are assumed, the wavenumber m is a positive real number, and
U, W, P, χ, Φ and σ are generally complex. Substituting these into (3.2)–(3.5), we
obtain

imU (z) +
d

dz
W (z) = 0, (3.8)

imP (z) = −U (z), (3.9)

d

dz
P (z) = −W (z) − RCχ(z), (3.10)[

φ0

(
d2

dz2
− m2

)
− k0 − σ

]
χ(z) = W (z) − d

dz
Φ(z), (3.11)

σΦ(z) = −δk0φ0χ(z). (3.12)

Equations (3.8)–(3.12) can be combined and simplified to give[
φ0

(
d2

dz2
− m2

)
− δk0φ0

σ

d

dz
− (k0 + σ )

] [
d2

dz2
− m2

]
W (z) = m2RCW (z), (3.13)

while W (z) must satisfy the boundary conditions

W (z) = 0 and

(
d2

dz2
− m2

)
W (z) = 0 at z = 0 and z = 1. (3.14)

Adapting the approach of Chandrasekhar (1961, § 15) for Rayleigh–Bénard
convection, we seek solutions to (3.13) in the form W (z) ∝ exp(qz), where q is a
root of the auxiliary equation[

φ0(q
2 − m2) − δk0φ0

σ
q − (k0 + σ )

]
[q2 − m2] = m2RC. (3.15)

In general, we may write

W (z) = A1e
q1z + A2e

q2z + A3e
q3z + A4e

q4z, (3.16)
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and the boundary conditions (3.14) may be written as

B ·

⎡
⎢⎢⎢⎣

A1

A2

A3

A4

⎤
⎥⎥⎥⎦ = 0, where B =

⎡
⎢⎢⎢⎣

1 1 1 1

eq1 eq2 eq3 eq4(
q2

1 − m2
) (

q2
2 − m2

) (
q2

3 − m2
) (

q2
4 − m2

)
(
q2

1 − m2
)
eq1

(
q2

2 − m2
)
eq2

(
q2

3 − m2
)
eq3

(
q2

4 − m2
)
eq4

⎤
⎥⎥⎥⎦.

(3.17)

For non-trivial solutions, therefore, we require that

det(B) = 0. (3.18)

3.1. Reaction but no matrix evolution

Before considering the full linear stability problem, it is helpful to examine the rather
simpler case δ = 0, so the reaction acts to eliminate solutal perturbations but does not
modify the porosity.

If we take δ = 0, then the terms in (3.15) that are linear in q disappear, and it has
roots q1 = −q2 and q3 = −q4 = −iq0, where

q1 =

[
1

2φ0

(k0 + σ + 2φ0m
2 +

√
(k0 + σ )2 + 4φ0m2RC)

]1/2

,

q0 =

[
− 1

2φ0

(k0 + σ + 2φ0m
2 −

√
(k0 + σ )2 + 4φ0m2RC)

]1/2

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.19)

The condition (3.18) for non-trivial solutions therefore becomes

((k0 + σ )2 + 4φ0m
2RC) sinh(q1) sin(q0) = 0. (3.20)

For this reduced problem the principle of exchange of stabilities holds (see Appendix
A.1), so for marginal stability we set σ = 0. Equation (3.20) then has solutions given
by

k2
0 + 4φ0m

2RC = 0, (3.21)

or

q1 =

[
1

2φ0

(
k0 + 2φ0m

2 +

√
k2

0 + 4φ0m2RC

)]1/2

= 0, (3.22)

or

q0 =

[
− 1

2φ0

(
k0 + 2φ0m

2 −
√

k2
0 + 4φ0m2RC

)]1/2

= nπ, (3.23)

where n ∈ �.
It is straightforward to demonstrate that the possibilities (3.21), (3.22) and (3.23)

with n= 0 each give repeated roots in (3.15), and therefore cannot lead to a non-trivial
solution of the linear problem. We are left with one remaining possibility:

RC = RC,0(m) =
(φ0(n

2π2 + m2) + k0)(n
2π2 + m2)

m2
, (3.24)

where n ∈ �, n �= 0, and the four solutions to (3.13) remain linearly independent.
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The quantity RC,0(m) takes its minimum value, Rcrit
C,0, when

n = 1 and m = mcrit
0 = π

(
1 +

k0

π2φ0

)1/4

, (3.25)

so

Rcrit
C,0 = φ0π

2

[
1 +

(
1 +

k0

π2φ0

)1/2

+
k0

π2φ0

] [
1 +

(
1 +

k0

π2φ0

)1/2
] (

1 +
k0

π2φ0

)−1/2

.

(3.26)

If we set k0 = 0 in (3.25) and (3.26), then we recover the marginal stability condition
Rcrit

C,0 = 4φ0π
2 for single-diffusive solutal convection in a non-evolving porous medium.

Figure 8(a) illustrates how Rcrit
C,0 increases with increasing k0.

It can be seen from (3.25) and (3.26) that increasing the reaction rate k0 both
stabilises the system (by eliminating destabilising solutal perturbations) and favours
the development of narrower convection cells. Pritchard & Richardson (2007) found
the same qualitative behaviour in solutally destabilised double-diffusive convection
with a reaction term, reflecting the strong similarity between these models. We will
discuss below (§ 3.3) how the predictions with δ = 0 relate to the onset of convection
in the full system.

3.2. Linear stability analysis of the full problem

When δ �=0, an analytical solution to (3.18) in terms of σ is not available. Therefore,
the stability problem was investigated numerically by a continuation method, tracking
σ as RC changed, while keeping all other parameters fixed. A numerical solution to
(3.20) for a large initial value of RC was used as an initial guess. This method was
implemented in Maple 12, using the built-in routine fsolve.

Unfortunately, the task of tracking the solution branch is numerically very laborious,
largely because the analytical solutions for qi are prohibitively complicated and so
nested numerical solutions of (3.15) and (3.18) are required. Additionally, we found
that to track a single branch it was necessary to reduce RC in steps not larger
than 10−2, with smaller steps being required close to the bifurcation point discussed
below (§ 3.3). On a desktop computer, the calculation of the results shown in figure 2
required around 2 h to produce. This effectively precluded the thorough investigation
of the full problem defined by (3.18); instead, a less formal Galerkin approach was
employed both in order to search parameter space and to provide insight into the
solution structure.

3.3. Galerkin approach to the linear stability problem

In the Galerkin approach, the vertical structure of the perturbations is approximated
by a severely truncated Fourier series in z, producing a set of equations that may
more readily be solved to provide rapid estimates of the stability behaviour.

3.3.1. Galerkin approach

We start with the system (3.8)–(3.12), subject to the boundary conditions

χ = 0 and W = 0 on z = 0 and z = 1, (3.27)
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and to the usual non-triviality condition that the solution is not identically zero.
Eliminating U , Φ and P we obtain the system

− 1

m2

d2W

dz2
= −W − RCχ, (3.28)

φ0

(
d2χ

dz2
− m2χ

)
− (k0 + σ )χ = W +

δk0φ0

σ

dχ

dz
, (3.29)

subject to the same boundary conditions. It is possible to further eliminate either χ

or W as in (3.13), but as this complicates the boundary conditions we retain both.
We will seek approximate solutions in the form

W (z) = sin(πz) + W2 sin(2πz), χ(z) = χ1 sin(πz) + χ2 sin(2πz). (3.30)

Note that the boundary conditions are automatically satisfied and the non-triviality
condition has been imposed by normalising the sin(πz) component of W (z). We
know that in the limit δ = 0 this approximation will become exact, with W2 = 0 =χ2;
meanwhile, we expect the second harmonics to be the first Fourier mode excited
by interactions, as in the study of reactive convection by Gatica et al. (1989) and
in nonlinear convection problems close to the stability boundary (see e.g. Rudraiah,
Srimani & Friedrich 1982; Mamou & Vasseur 1999; Pritchard & Richardson 2007).

With four unknowns, we can choose to satisfy four integral conditions. The natural
ones are obtained by extracting the first and second Fourier sine components of (3.28)
and (3.29):

∫ 1

0

sin(πnz)

[
− 1

m2

d2W

dz2

]
dz =

∫ 1

0

sin(πnz) [−W − RCχ] dz, (3.31)

∫ 1

0

sin(πnz)

[
φ0

(
d2χ

dz2
− m2χ

)
− (k0 + σ )χ

]
dz =

∫ 1

0

sin(πnz)

[
W +

δk0φ0

σ

dχ

dz

]
dz,

(3.32)
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for n=1 and for n= 2. This yields a system of four algebraic equations:

π2

2m2
= −1

2
− RC

2
χ1, (3.33)

−1

2
(φ0π

2 + φ0m
2 + k0 + σ )χ1 =

1

2
− 4δk0φ0

3σ
χ2, (3.34)

2π2W2

m2
= −1

2
W2 − RC

2
χ2, (3.35)

−
(

2φ0π
2 +

φ0m
2

2
+

k0 + σ

2

)
χ2 =

1

2
W2 +

4δk0φ0

3σ
χ1. (3.36)

The most productive approach to these equations is to eliminate W2, χ1 and χ2

to obtain an equation for σ . Before doing so, it is helpful to express the Rayleigh
number in terms of the critical condition for δ = 0. We define RC = RC,0(m) + ∆,
where RC,0(m) is given by (3.24). We can now write the growth rate for δ = 0 as

σ = σ0 =
m2∆

π2 + m2
. (3.37)

With this notation, we find that σ �= 0 satisfies the quartic

a4σ
4 + a3σ

3 + a2σ
2 + a1σ + a0 = 0, (3.38)

where

a4 = 9m4 + 36π4 + 45π2m2, (3.39)

a3 = 27π2k0(m
2 + π2) + 54π2φ0m

4 + 189π4φ0m
2 + 135π6φ0 − (18m4 + 45π2m2)∆,

(3.40)

a2 = −(135π4φ0m
2 + 54π2φ0m

4 + 27π2k0m
2)∆ + 9m4∆2, (3.41)

a1 = 0, (3.42)

a0 = (256π4 + 320π2m2 + 64m4)φ2
0k

2
0δ

2. (3.43)

Because (3.38) is a polynomial, it is straightforward to locate all the complex roots
numerically (for example, using the fsolve command in Maple), and thus to track
all the solutions through parameter space.

3.3.2. The behaviour of roots σ (RC; m)

Figure 2 shows representative results when the wavenumber m and all the
parameters except ∆ are fixed, while ∆ is varied about zero. For this, and all
subsequent figures in this section, the default parameter values were φ0 = 0.1, k0 = 10
and δ = 0.1; this rather large value of δ was chosen to make deviations from the case
δ = 0 as apparent as possible.

When ∆ is large and positive, so RC is somewhat larger than RC,0, the branch of σ

with largest real part closely tracks σ0. It deviates weakly from this as ∆ is reduced,
until this branch and the one below merge. This occurs at about ∆ ≈ 0.7 in figures 2(a)
and 2(b); more generally (see the asymptotic analysis in § A.2.1), the point at which
this occurs scales as ∆ ∼ δ2/3 and σ ∼ δ2/3. At this bifurcation point, the values of σ

become complex. As ∆ is further reduced, Re(σ ) continues to fall, but never reaches
zero, asymptoting towards it as ∆ → −∞ (see § A.2.3); meanwhile Im(σ ) first increases
rapidly in magnitude and then decays. This behaviour appears to be generic for all
values of m, although the position of the bifurcation point changes with m.
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This behaviour may be interpreted physically. It is straightforward to show from
(3.8)–(3.12) that the principle of the exchange of stabilities does not hold for the
base state, since when σ = 0 and δ �=0, (3.12) requires χ = 0, and the system may be
reduced to d2W/dz2 = m2W with W (0) = 0 = W (1) and no non-trivial solutions. Thus,
although the system with δ �= 0 can mimic the system with δ = 0 closely (to within
O(δ2): see § A.2.2), as RC → RC,0 something must break down. What emerges is a
weakly growing travelling mode, which will be discussed further in the next section.
It is interesting and unexpected that the system remains faintly unstable even when
RC is reduced well below RC,0.

Figure 2 also compares the predictions of the Galerkin analysis with those from
the full numerical solution of (3.18), again taking a relatively large value of δ. Good
agreement can be seen for values of ∆ as low as the bifurcation point; even thereafter,
the real part of the growth rate is tracked very accurately, while errors in the imaginary
part are of the order of 10 %. Further comparisons were carried out for smaller values
of δ, with correspondingly still better agreement. Note that the numerical solution
tracks only one branch below the bifurcation point, and it appears to be arbitrary
whether it selects the positive or the negative solution for Im(σ ).

3.3.3. Eigenfunction structure and instability mechanism

The Galerkin stability analysis provides not just the complex growth rate σ but
also the quantities W2, χ1 and χ2 that define the corresponding vertical eigenfunction.
To elucidate the mechanism involved in the instability, it is useful to examine these
quantities.

Note first that, in contrast to the situation in non-reactive double-diffusive
convection where complex conjugate growth rates appear, the two complex conjugate
solutions here have different vertical structures. This means that rather than taking
the form of a stationary amplifying oscillation, the instability here can take the form
of an amplifying travelling wave.

It is useful first to identify how the second harmonic alters the shapes and relative
phases of the various perturbations. We may write

w(x, z, t) = Re
(
eimxe(σR+iσI )t (sin(πz) + W2 sin(2πz))

)
= eσRt [sin(πz) cos(mx + σI t) + |W2| sin(2πz) cos(mx + σI t + θ)], (3.44)

where θ = arg(W2). It is clear that |W2| controls the relative strength of the second
harmonic. The relative phase θ then controls the way in which the second harmonic
distorts the first. If θ =0, then the second harmonic accentuates the perturbation in
0 <z < 1/2 and reduces it in 1/2 < z < 1: the net effect is to distort the convection cells
by squashing them downwards towards the base of the layer. Similarly, if θ = ± π, the
second harmonic squashes the convection cells upwards. If 0 <θ < π, the enhancement
in the lower region and the reduction in the upper region are both displaced leftwards;
the effect is that the vertical axis of the convective cell is tilted slightly to the right, with
an additional downward (0 < θ < π/2) or upward (π/2 < θ < π) squashing. Conversely,
if −π <θ < 0, the cells are tilted slightly to the left.

Similar interpretations can be given for other quantities. For example, |χ1| and |χ2|
measure the importance of the first and second harmonics in the concentration
perturbation; arg(χ1) describes the horizontal offset between C ′ and w′, while
arg(χ2/χ1) describes the relative phase of the second harmonic to the first in C ′, and
thus describes the manner in which the concentration perturbations are distorted by
the second harmonic. In what follows, we will also consider the porosity perturbation
φ′, defining Φ1 and Φ2 in the obvious manner and obtaining them via (3.12).
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k0 = 10, δ =0.1 and m= 3.

Figures 3 and 4 show how the amplitudes and phases of the perturbations to
vertical velocity, concentration and porosity vary as ∆ changes. They should be read
in conjunction with figure 5, which illustrates how the corresponding spatial structure
of the fastest-growing eigenfunction behaves as ∆ is reduced. All the cases plotted in
figure 5 lie in the regime where σ is fully complex; the bifurcation point for these
parameter values occurs at approximately ∆ =0.7.

For values of ∆ to the right of the bifurcation point (∆ ≈ 0.7), the perturbations
to concentration and porosity are both small (figure 3a) and are in phase such that
maxima of the first harmonic of φ′ correspond to minima of the first harmonic of
χ (figure 3b). A change in trend is immediately noticeable at the bifurcation point:
although the first harmonic of concentration continues to vary smoothly, and it
remains almost perfectly in phase with the velocity (arg(χ1) ≈ −π, as can be seen in
figure 3b), the trend in the amplitude of the porosity perturbation alters, and it is no
longer perfectly in phase with the concentration perturbation; as arg(Φ1) decreases
(figure 3b), the extrema of φ′ move rightwards relative to those of w′ and C ′.

This is the situation that is beginning to emerge in figures 5(a) and 5(b), where
∆ =0.5. The pattern of flow, concentration and porosity is very similar to that for
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Figure 5. Eigenfunctions from the Galerkin analysis, with the leftward-propagating mode
taken in each case. (a, c, e) Streamlines superimposed on the φ perturbation. (b, d, f )
Streamlines superimposed on the C perturbation. Parameters were φ0 = 0.1, k0 = 10 and m= 3.
In (a) and (b), ∆ = 0.5; in (c) and (d ), ∆= 0; in (e) and (f ), ∆= −1. In each case, the values
of ψ on the streamlines are evenly spaced and in each plot darker shading corresponds to
lower values; scales are arbitrary.

simple convection. Downflow draws down higher concentrations from the upper
boundary while upflow draws up lower concentrations from the lower boundary.
Upflow occurs in high-permeability regions and downflow in low-permeability regions;
since the concentration and porosity perturbations are still approximately ‘in phase’,
the reaction will tend to amplify the porosity perturbation. The small phase difference
between C ′ and φ′ is just apparent, but the distortion caused by the second harmonics
is almost imperceptible at this stage.

As ∆ is reduced a little further, the concentration and porosity continue to move
further out of phase (figure 3b), the porosity perturbation grows in importance
(figure 3a), and the second harmonics start to become apparent. The relative phases
of all the second harmonics are in the range (π/2, π) (figure 4b), so they tilt the
convection pattern rightwards. This can be seen in figures 5(c) and 5(d ) for ∆ =0; the
velocity and concentration perturbations are still closely in phase, but the leftward
offset of the porosity perturbation is greater and the rightward tilting of the cells is
more evident. Note that it is at roughly this value of ∆ that the migration rate of the
pattern is greatest (see figure 2b).

As ∆ is reduced still further, the phase difference between the porosity and
concentration perturbations approaches π/2 (figure 3b), so they are almost exactly a
quarter of a period out of phase; this is visible in figures 5(e) and 5(f ) (∆ = −1). The
importance of the second harmonics increases (figure 4a) and their phase difference
from the first harmonic approaches π/2 (figure 4b), so they tend to tilt the cells
rightwards without squashing them upwards or downwards. The tilting is now clearly
evident.

We are now in a position to discuss the mechanisms that maintain this amplifying
travelling-wave mode. Recall that the concentration perturbation equation (3.4)
contains two source terms which must balance the dissipative effects of the reaction
and diffusion terms. The first of these sources is the convective term −w′; the second
is the term ∂φ′/∂z, which represents net diffusive transport due to gradients in
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porosity superimposed on the background vertical gradient of concentration. When
the porosity perturbation is weak and the system is dominated by convection, the
convective source term dominates. When the porosity perturbation is stronger and
convective flow is weak, the importance of the porosity-gradient mechanism increases.
Because the porosity perturbation is offset from the concentration perturbation, the
effect of this term is felt differently by different parts of the concentration field. Given
a ‘cell’ of high C ′, it can be seen by comparing figures 5(e) and 5(f ) that the porosity
gradient will be negative both to the top left and bottom right of this ‘cell’, and
positive to the top right and bottom left of it. Since the cell is already tilted to the
right, this mechanism acts to maintain the tilting against buoyant effects that would
tend to restore it to an upright convective cell, and diffusive effects that would tend to
eliminate the perturbation altogether. Meanwhile, the offset between C ′ and φ′ has the
additional effect of causing the porosity perturbations to migrate leftwards. Essentially,
then, this mode of behaviour can be characterised as a kind of reaction–diffusion
instability which is parasitic on the background vertical concentration gradient.

The modes described here, comprising travelling-wave patterns of tilted cells, are
reminiscent of similar patterns seen in mushy layers (Anderson & Worster 1996)
and nonlinear simulations of double-diffusive convection (Mamou & Vasseur 1999;
Mamou, Vasseur & Hasnaoui 2001). The mechanisms, however, are distinct: the
mushy-layer process depends crucially on the release of latent heat and on the time
scale of solidification (Anderson & Worster 1996, § 5), while the process in non-
reactive convection depends on the double-diffusive effects which permit overdamped
oscillations.

3.3.4. Predictions of stability behaviour

It is easy to scan systematically across (RC, m)-space and thus locate the fastest-
growing perturbation for each value of RC; for all values of the parameters considered,
there was a single unambiguous maximum over m. We confine the discussion in this
section to the branch with the highest value of Re(σ ), noting that when Im(σ ) �= 0
the complex conjugate of the branch plotted will also be a solution (see figure 2).

Figure 6 illustrates how the wavenumber and growth rate of the fastest-growing
perturbation vary with RC , for a specific value of k0. In figure 6(a), it is clear
that the emergence of oscillatory modes at RC ≈ 19 coincides with a rapid, but not
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Figure 7. Results from the Galerkin analysis with φ0 = 0.1 and δ = 0.1. (a) Re(σmax ): contours
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C,0(k0).

catastrophic, decrease in growth rates. There is a small, but noticeable, rapid change
in the favoured wavenumber at this point, which appears to be genuine rather than
a plotting artefact.

Figure 7 extends figure 6 to demonstrate how the stability of the system varies with
RC and k0, again taking δ = 0.1 to emphasise the effect of the matrix evolution. It is
evident from this figure that the stability boundary Rcrit

C,0 from the case δ = 0 provides

a good estimate of the boundary between two regimes of behaviour. For RC � Rcrit
C,0,

matrix evolution is insignificant: Im(σmax ) is zero, and the favoured wavenumber
mmax increases along the stability boundary but is otherwise independent of k0 in this
regime. For RC � Rcrit

C,0, the travelling-wave mode dominates, with Re(σmax ) very close
to zero and Im(σmax ) decaying gradually away from the boundary. In this regime,
mmax does vary somewhat with k0, and for sufficiently small values of RC the favoured
wavenumber becomes very small. This indicates that when buoyancy effects are very
small, the instability favours extremely long-wave perturbations; in practice, these
may not be realised within a finite or a periodic domain.

4. Numerical simulations
A full numerical integration of the system was carried out in order both to test the

predictions of the linear stability analysis and to examine the nonlinear behaviour
and flow–permeability feedback over longer time scales.

The streamfunction formulation of the system, (B 1)–(B 3), was numerically
integrated using the Comsol Multiphysics package. The equations were solved in
a rectangular domain, 0 <x < 10, 0 <z < 1, and the boundary conditions (B 4) were
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applied on the horizontal boundaries, while periodicity was imposed on the vertical
boundaries. Details of the numerical method are discussed in Appendix B.

4.1. Stability boundary and the onset of convection

Figure 8(a) shows the critical stability curve when δ = 0 given by (3.26). This curve
gives the values of Rcrit

C,0 used in our simulations.
Figure 8(b) summarises a large number of numerical experiments carried out to

validate the linear stability analysis against the numerics. In each simulation, we took
φ0 = 0.1 and δ = 0.001; each simulation was 1500 time units long and was started
from the initial conditions (B 5). This length of simulation ensured that the system
had enough time for convection to develop, even in the marginal cases. The criterion
used to distinguish between non-convective and convective cases was whether by the
end of the simulation the maximum value of |u| was greater or less than 10−1.

Figure 9 shows the maximum absolute velocity for RC/Rcrit
C,0 = 0.99, 1.00 and 1.01.

When RC/Rcrit
C,0 = 0.99 (figure 9a), the maximum velocity was always well below

the cutoff point for convective behaviour, and when RC/Rcrit
C,0 = 1.01 (figure 9b) the

maximum velocity was always well above the cutoff point. When RC/Rcrit
C,0 = 1.00

(figure 9c), however, we can see the transition from non-convective to convective
behaviour at k0 ≈ 14.

As can be seen from figure 8(b), the linear stability result for δ = 0 (see (3.26))
agrees well with the numerical results. This suggests, in agreement with § 3.3, that the
effects of porosity evolution on the onset of convection are rather subtle.
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Figure 10. Streamlines for simulations with (a) k0 = 0 and (b) k0 = 40. In both cases, there was
no porosity evolution (δ = 0) and the Rayleigh number was 1 % above the critical Rayleigh
number given by (3.26). The irregularities in the streamlines around x = 0.75 are artefacts of
the plotting software, caused by the irregular mesh triangulation in this region.

A key qualitative prediction of the linear stability analysis is that along the line
RC = Rcrit

C,0, the wavelength of the fastest-growing perturbations should increase with
the reaction rate. Figure 10 shows the streamlines for two simulations: one with
no reaction (k0 = 0) and one with a higher reaction rate (k0 = 40). In each case, the
Rayleigh number was 1% above the critical Rayleigh number given by (3.26). For
no reaction, both (3.25) and the numerics give a wavenumber of π. For k0 = 40,
(3.25) predicts the wavenumber to be mcrit

0 ≈ 7.98, and the numerical results show
the wavenumber to be m ≈ 7.54. The discrepancy can be attributed to the horizontal
periodicity of the numerical domain; the numerical value of m corresponds to 12
pairs of counter-rotating cells in 0 � x � 10, while the theoretically predicted value
would require between 12 and 13 such pairs. Similar discretisation errors were noted
by Pritchard & Richardson (2007).

4.2. Long-term behaviour

When examining the long-term behaviour of the system, we will pay particular
attention to two cases: one with a slower reaction k0 = 10 and one with a faster
reaction k0 = 30. Each simulation we describe lasted for 5000 time units and employed
the parameters φ0 = 0.1 and δ = 0.001. We will present results for four values of the
Rayleigh number: the critical Rayleigh number given by (3.26), and 10 %, 20 % and
50 % above this value.

4.2.1. Reference case: k0 = 10 and RC =1.1Rcrit
C,0

We first consider the slow reaction with k0 = 10. As a reference case for the long-
term behaviour, we begin by focusing on the simulation with a Rayleigh number 10 %
above the critical value, RC =20.42 (compared with Rcrit

C,0 ≈ 18.56). Figure 11 shows
the evolution of the concentration perturbation C ′, the porosity φ and the absolute
velocity |u| for the left half of the domain. The solid lines on the concentration and
porosity plots are the streamlines and the arrows on the absolute velocity plot indicate
the velocity field.

By t = 100, steady convection has been established (figure 11a). At this time, the
concentration and porosity fields are in phase; that is, regions of C ′ > 0 coincide
with regions of lower porosity (φ <φ0) and regions of C ′ < 0 coincide with regions of
higher porosity (φ >φ0). From (3.5), we expect porosity to decrease where C ′ > 0 and
to increase where C ′ < 0. As the flow is buoyancy-driven, downward flow is favoured
where C ′ > 0, drawing down higher concentrations from the top boundary, and upward
flow is favoured where C ′ < 0, drawing up lower concentrations from the bottom
boundary: this is the essential mechanism that sustains convection. Furthermore,
flow is faster in areas of higher porosity, shown by the closer packed streamlines in
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Figure 11. (a–i ) Evolution with k0 = 10. Shading indicates solutal concentration perturbation C ′ (left), porosity φ (centre) and absolute velocity
|u| (right). Solid lines are streamlines and arrows indicate the velocity field but are not drawn to scale. The irregularities in the streamlines around
x = 0.75 are artefacts of the plotting software, caused by the irregular mesh triangulation in this region.
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regions of φ >φ0 which coincide with the darker areas of the absolute velocity field.
Therefore, as can be seen from the arrows on the absolute velocity plot, upward flow
is faster than downward flow.

Once steady convection has been established, the porosity field continues to evolve
until it triggers a secondary instability in the form of a phase shift. Figure 11(b) shows
the fields at t = 200, just before the phase shift. Comparing with figure 11(a), we can
see that although the concentration field is the same, the porosity field has evolved
further and now has more pronounced areas of high and low porosity. As a result of
this evolution, the absolute velocity field now has more pronounced areas of upward
flow coinciding with areas of higher porosity. The centres of the circulation cells have
also moved upwards slightly.

Part-way through the shift (t = 215, figure 11c), the concentration field has moved
approximately an eighth of a cell (0.25 x-units) to the right, but the porosity field
remains the same as before the shift. Also, in the absolute velocity field we see that the
upward flow has remained in approximately the same position, but the downward flow
has shifted towards the right, while there is a slight tilting of the cells to the left (most
apparent in the concentration field). By the end of the shift at t = 250 (figure 11d ),
the concentration field and streamlines have moved a half cell (one x-unit) to the
right, and the centre of the circulation cells has moved slightly downward, but the
porosity field is still effectively unchanged. There is still downward flow where C ′ > 0,
but this now coincides with high-porosity regions. Therefore, downward flow is now
faster than upward flow.

Further evidence of this phase shift can be seen in figure 12(b), which shows the
maximum absolute velocity throughout the whole domain. From these figures, we
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see that convection develops and is maintained for approximately 200 time steps, but
there is a dip in the velocity around the time of the phase shift as the circulation
slows and then re-establishes itself. After this shift, the system settles back into a
quasi-equilibrium state of almost steady convection.

The secondary instability occurs as a result of the positive feedback between the
concentration and porosity fields which causes clogging in the downflow regions. This
clogging eventually reaches some critical state and displaces the downflow sideways,
resulting in narrower, tilted convection cells. These are overcome by diffusion and the
circulation begins to shut down before it is replaced by a reversed circulation. Bolton
et al. (1999) identified a similar mechanism which acted to displace the ‘stalk’ of rising
thermal plumes in their simulations. The sideways migration of these fully developed,
nonlinear convection cells is also reminiscent of the migration of small-amplitude
cells seen in the linear analysis close to RC = Rcrit

C,0 (§ 3.3.3). Unlike the phenomenon
seen in the linear case, the tilting and sideways movement here is readily halted by
the tendency of buoyancy-driven convection to favour stationary, upright cells.

At t = 250 (figure 11d ), the concentration and porosity fields are out of phase: areas
of large positive concentration perturbations now coincide with areas of high porosity
and vice versa. In these high concentration (C ′ > 0) areas porosity will decrease, and
in low concentration (C ′ < 0) areas porosity will increase. Therefore, the porosity
evolution strives to get the concentration and porosity fields back into phase.

The porosity evolution is shown in figure 12(b), plotted with the maximum absolute
velocity to display the correlation with the phase shifts. At the time of the phase
shift (denoted by the vertical dotted line), the porosity contrast has reached a local
maximum, with a peak in the maximum porosity and a trough in the minimum
porosity. After the shift, the maximum porosity decreases and the minimum porosity
increases, because the concentration and porosity fields are now out of phase. By
t ≈ 500, the concentration and porosity fields are back in phase and so now the
porosity contrast begins to increase again at a rate similar to that before the phase
shift.

By t = 710 (figure 11e), the porosity is back in phase with the concentration field.
There is faster upward flow in regions of higher porosity and slower downflow in low
porosity regions, as before the first phase shift. Note that there is now a distinct vertical
asymmetry in the circulation and porosity field: there is more dissolution towards the
top of the domain and the circulation has correspondingly moved upwards to this
higher porosity region. After this, the system goes through another phase shift, again
moving one half cell to the right, displaying the same behaviour as with the first
shift. This shift can be seen in figure 12(b) as the sharp dip in |u|max at t ≈ 750. These
figures also show porosity behaviour similar to that during the first phase shift, with
the porosity contrast peaking around the time of the shift.

From figure 12(b) we can see that the system only undergoes two rapid phase
shifts, and subsequent changes take place over a much longer time scale. By t = 1500
(figure 11f ), the system is back in phase, but with the circulation field shifted a
further quarter cell to the right. There is now a more distinct vertical asymmetry in
the circulation and porosity fields, with higher porosity regions and the centres of the
circulation cells now even closer to the top of the domain. Also, the magnitude of the
concentration perturbations and the absolute velocity are reduced.

By t = 3000 (figure 11g), the circulation has shifted a further quarter cell to the right
but the system is still in phase, with upflow concentrated in more highly permeable
vertical channels. Alternate high-permeability channels are more pronounced; this
can be explained as the result of an instability whereby a slightly more permeable
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channel ‘steals’ flux from its neighbours and thus experiences more rapid dissolution.
This is akin to the ‘screening’ effect that causes dissolution patterns to be dominated
by a few large fingers (Daccord 1987; Hoefner & Fogler 1988). This screening effect
competes with the convective circulation to set the favoured wavenumber of the
system, leading to the alternation that is observed. There is a superficial similarity
between the high-permeability channels here and the chimneys observed in mushy
layers (Worster 1997), although the channels here are merely regions of enhanced
porosity rather than regions where the porous matrix has been entirely dissolved. The
layering of high porosity over lower porosity regions is also more pronounced at this
stage than at earlier times.

The slow evolution continues and by t =4000 (figure 11h) the fields have changed
considerably. The concentration perturbations are now very small and there is distinct
layering in the porosity field, with a low porosity barrier in the middle of the domain
which is pierced by occasional high-porosity channels. This barrier cannot extend to
the lower boundary since the boundary conditions there fix the concentration at its
equilibrium value Ceq , and hence fix the porosity at φ = φ0. There is still evidence
of the period-doubling seen at earlier times, with alternate high-porosity channels
more pronounced. From the streamlines and the absolute velocity field, we see that
because of this barrier, two-layered convection has developed. In the top layer, the
concentration and porosity fields are in phase, but in the bottom layer they are out
of phase.

By the end of the simulation at t = 5000 (figure 11i ), only the lower layer where the
concentration and porosity fields are out of phase has survived and it now penetrates
the upper layer. The period-doubling has survived, but there is now more pronounced
downflow in alternate high-porosity channels. Note that even after more than 1000
time units, the lower layer has not yet reversed phase.

4.2.2. Effect of varying the Rayleigh number

Figure 12 shows the porosity evolution and maximum absolute velocity for each of
the convective Rayleigh numbers with k0 = 10. Initial adjustment to steady convection
happens very rapidly, within roughly the first 10 time units. The system then evolves
gradually until the first phase shift, the signature of which is a sharp drop in the
maximum absolute velocity. The higher the Rayleigh number, the longer it is before
the phase shift occurs. The porosity contrast is at its greatest when a phase shift
occurs, and the higher the Rayleigh number, the greater the porosity change when the
system shifts. This behaviour is expected since as we increase the Rayleigh number,
we are increasing the concentration difference between the top and bottom of the
domain. Therefore, we expect to see bigger absolute velocities and require bigger
porosity differences to trigger a phase shift.

When RC = Rcrit
C,0, the system appears for around 1000 time steps to be non-

convective (figure 8b), but after this time a weak circulation does develop
(figure 12a). This reflects the fact that even at or below the ‘threshold’ RC = Rcrit

C,0, the

system remains weakly unstable, as shown in § 3.3. Meanwhile, when RC = 1.2Rcrit
C,0

and RC =1.5Rcrit
C,0, we see behaviour similar to that with RC = 1.1Rcrit

C,0, although with
more rapid and vigorous evolution.

4.2.3. Effect of varying the reaction rate

We now consider the faster reaction with k0 = 30. To allow a direct comparison
with the long-term behaviour in the slow reaction case, we focus on a simulation
with a Rayleigh number 10 % above the critical value, RC =47.34 compared with
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Rcrit
C,0 ≈ 43.03. Figure 13 shows the evolution of the concentration perturbation C ′, the

porosity φ and the absolute velocity |u| for the left half of the domain, while figure
14 shows the corresponding evolution of the maximum velocity and the porosity
contrast. The most prominent difference between figure 14 and figure 12 is that the
higher reaction rate and higher Rayleigh number lead to faster evolution of the
system. What is of more interest is whether the qualitative development also changes.

Buoyancy-driven convection has been established by t ≈ 10 (not shown); at this
time, the convection pattern closely resembles figure 11(a), and there are 10 pairs
of counter-rotating cells in the full domain, corresponding to a wavenumber of
m ≈ 6.28, compared with the critical wavenumber mcrit

0 ≈ 7.44 predicted by (3.25). By
t = 50 (figure 13a), additional convection cells have appeared at x ≈ 3.5 and x ≈ 9.5.
These subsequently expand so that there are 12 pairs of counter-rotating cells in
the domain, corresponding to a wavenumber of m ≈ 7.54. The emergence of the two
pairs of counter-rotating cells, on top of an existing although weakly defined porosity
structure, results in a less uniform cell pattern, with some cells now tilting and slightly
more pronounced upflow in some channels than others (figure 13b). Note from
figure 14 that the emergence of the extra cells does not affect the maximum absolute
velocity.

Once convection has been established with an appropriate wavenumber, the porosity
field evolves until it triggers a secondary instability, as with the slower reaction rate
(§ 4.2.1). Figure 13(b) shows the fields at t = 180, just before the phase shift (compare
figure 11b for the case k0 = 10). As before, the concentration perturbation and porosity
fields are initially in phase before the shift, while after the phase shift (t = 210,
figure 13c) the concentration perturbation field and streamlines have moved a half
cell (≈ 1 x-unit) to the right, and now the cells are more upright. Furthermore, the
concentration perturbation and porosity fields are now out of phase. The overall
pattern is similar to figure 11(d ), although the strengths of the cells are less uniform;
this may be because the faster reaction promotes the ‘screening’ effect in which cells
compete with their neighbours for flux (§ 4.2.1).

The phase shift can also be seen in the maximum absolute velocity and porosity
contrast (figure 14). Convection develops and is maintained for almost 200 time steps,
but there is a dip in the velocity around the time of the phase shift (marked by
the vertical dotted line) as the circulation slows and then re-establishes itself. After
this shift, the system settles back into a quasi-equilibrium state of steady convection,
with the maximum velocity and porosity contrast first declining and then gradually
increasing again as the porosity comes back into phase with the concentration.
(Precisely analogous behaviour can be seen in figure 12.)

By t =380 (figure 13d ), the concentration and porosity fields are back in phase,
although the porosity perturbations are small and the centres of the circulation cells
have moved upwards. No further rapid phase shifts occur, but the slow evolution
continues. At first, the porosity contrast becomes more pronounced, with ‘eyes’ of
high porosity developing at the top of the layer and regions of lower porosity in the
middle of the domain; meanwhile, the circulation pattern becomes more irregular
than § 4.2.1, with a weak lower layer of counter-rotating cells forming in places and
flow in the middle of the layer focussed into a few narrow channels (figure 13e);
the picture is reminiscent of figure 11(h), but the flow pattern is more irregular and
the overall porosity contrast more strongly dominated by the ‘eyes’ near the upper
boundary. As the simulation continues, the qualitative picture is unaltered (figure 13f ),
but the porosity and the maximum velocity both gradually decline (figure 14). This
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Figure 13. (a–f ) Evolution with k0 = 30. Shading indicates solutal concentration perturbation C ′ (left), porosity φ (centre) and absolute velocity
|u| (right). Solid lines are streamlines and arrows indicate the velocity field but are not drawn to scale. The irregularities in the streamlines around
x = 0.75 are artefacts of the plotting software, caused by the irregular mesh triangulation in this region.
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Figure 14. (Colour online) Maximum absolute velocity |u| and (a) maximum and (b)
minimum porosity φ throughout the whole domain when φ0 = 0.1, δ = 0.001, k0 = 30 and
RC =1.1Rcrit

C,0. Solid line, the maximum velocity; dashed line, the maximum or minimum
porosity.

suggests that the very long-term attractor of the system may be a non-convective
state with a considerably decreased porosity throughout the layer.

4.2.4. Summary of long-term behaviour

A common feature of all the numerical experiments is the interaction between
processes operating at different time scales. There is always a rapid hydrodynamic
adjustment, over dimensionless time scales of the order of 1–10, which seeks to
establish a steady convective circulation pattern modulated by the instantaneous
porosity structure. Over a slower time scale, of the order of 100 in our experiments,
there is a tendency for cells to ‘brand’ themselves on the matrix by establishing and
reinforcing an in-phase porosity pattern. This reinforcement, though, must compete
with the secondary instability, associated with the clogging and displacement of
high-concentration downflows, which drives occasional phase shifts that reverse the
direction of the circulation over time scales of the order of 10 in our experiments.
Over extremely long time scales (of the order of 1000 in our experiments), the
repeated interaction between these different processes tends to lead to layered porosity
structures penetrated by narrow vertical channels; there is some suggestion that
ultimately the system may tend towards a non-convective state in which the porosity
is everywhere higher than its initial value.

Higher Rayleigh numbers generally lead to more rapidly established and more
strongly maintained convective circulation; the onset of secondary instabilities is
delayed but not prevented by higher values of RC . Similarly, higher reaction rates
favour more rapid evolution of the system and bring forward the occurrence of the
secondary instability. They also accelerate the very slow evolution, potentially reducing
the time until the convection can modify the rock enough to efface itself altogether.

5. Summary and conclusions
We have investigated the behaviour of an idealised mathematical model of

geochemical convection in a reactive porous medium. The model can be obtained
from the thermosolutal model of Pritchard & Richardson (2007) in the limit of very
high thermal diffusivity and finite solutal diffusivity with negligible thermal expansion,
but it also incorporates the novel feature of evolving porosity and permeability fields.

Although the porosity evolution is slow on the time scale of convection and reaction,
it exerts an unexpected influence on the stability properties of the system. When
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the system is strongly buoyantly unstable, the reaction acts to remove destabilising
solute and thus to stabilise the system. However, when the system is close to the
threshold of instability (as calculated without porosity evolution), a new unstable
mode becomes available and persists even when the Rayleigh number is reduced
below the critical value for buoyant instability. This new mode is essentially a reaction–
diffusion instability which is driven by solute fluxes caused by the interaction between
the porosity perturbation and the background vertical concentration gradient.

Over longer time scales, the porosity evolution introduces further new behaviour;
although quasi-steady convective circulation becomes established as in non-reactive
convection, it cannot persist indefinitely. Instead, the porosity changes associated with
the circulation become steadily more pronounced, and ultimately trigger a relatively
rapid reorganisation of the flow in which the entire pattern of convective cells shifts
sideways by half a wavelength.

The repeated interplay between episodes of quasi-steady convection and the rapid
reorganisations that punctuate them eventually develops a layered porosity structure,
with the centre of the layer being dominated by a low-porosity band broken by
occasional higher-permeability vertical channels and pockets of enhanced porosity
occurring nearer the top and bottom of the layer. There appears to be no long-term
steady convective state towards which the system asymptotes, although once layering
has become established there is a tendency for the strength of convection to decrease.

These findings complement the numerical experiments of Bolton et al. (1996, 1997,
1999) by demonstrating that geochemical convection can spontaneously give rise to
heterogeneous porosity fields, and not merely enhance heterogeneities that already
exist. Their wider implication is that in situations in which long-term convective
transport is simulated in order to determine patterns of mineralisation, such as ore
deposition (e.g. Raffensperger & Garven 1995a,b), it may be essential to incorporate
flow–reaction–permeability coupling in order to capture even the outline of the
mineralisation patterns. Another implication is that because of the development
of instabilities which scale in a nonlinear manner with the matrix evolution rate δ,
simulations which accelerate the rock evolution to reduce runtime may thereby distort
their results in unexpected ways. This implication was supported by further numerical
simulations (omitted here for brevity) which found that increasing δ by a factor of
10 resulted in more pronounced tilting of the circulation cells, as well as triggering
earlier and more frequent episodes of rapid flow reorganisation and a more strongly
layered porosity structure.

The most natural extension of the work described here is to the full thermosolutal
system. Work on this problem is ongoing, and may be expected to yield further
intricate connections between flow, reaction and rock evolution processes. More
detailed models of the geochemistry, including multiple species or more complicated
reaction laws, could also readily be considered; the hope is that the fundamental
interactions described here will provide a basis for understanding such systems.

In summary, investigating this apparently minor extension to the classic problem of
convection in a porous medium has revealed surprisingly rich dynamical behaviour,
and hints that the geological signature of convective processes may not be immediately
recognisable as such. After more than 60 years of mathematical investigation, it
appears that geochemical convection has lost none of its fascination or its ability to
surprise.
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Appendix A. Technical details of various mathematical results
A.1. Principle of the exchange of stabilities when δ = 0

Adapting the approach of Chandrasekhar (1961, § 11), we show that for the reduced
problem with a reaction but no matrix evolution, the principle of the exchange of
stabilities is valid, so marginal stability is characterised by σ = 0. Throughout this
appendix, we will use the notation D = d/dz for brevity.

Let G(z) = (D2 − m2)W (z), so (3.13), with δ =0, becomes

[φ0(D
2 − m2) − (k0 + σ )]G(z) = m2RCW (z), (A 1)

where W (z) and G(z) must satisfy the boundary conditions

W (z) = 0 and G(z) = 0 at z = 0 and z = 1. (A 2)

We multiply (A 1) by G∗, the complex conjugate of G, and integrate over the range
of z, obtaining∫ 1

0

G∗[φ0(D
2 − m2) − (k0 + σ )]G dz = m2RC

∫ 1

0

G∗W dz. (A 3)

Integrating by parts and using G(z) = (D2 − m2)W (z), this may be rewritten as∫ 1

0

{φ0|DG|2 + (φ0m
2 + k0 + σ )|G|2} dz − m2RC

∫ 1

0

{|DW |2 + m2|W |2} dz = 0. (A 4)

The real and imaginary parts of (A 4) must vanish separately. The imaginary part
is given by

Im(σ )

∫ 1

0

|G|2 dz = 0, (A 5)

which is satisfied only if Im(σ ) = 0. Therefore, σ must be real, and marginal stability
is characterised by σ =0.

A.2. Asymptotic analysis of the quartic in the Galerkin approach

To analyse the asymptotic behaviour of σ , it is helpful to rewrite the quartic (3.38) as

a4σ
4 + (b3 − c3∆)σ 3 + (d2∆

2 − c2∆)σ 2 + b0δ
2 = 0, (A 6)

where all the constants ai , bi , ci and di are positive and of order unity; they can
readily be extracted from (3.39)–(3.43). We will always take δ � 1 and seek asymptotic
scalings for σ and ∆ in terms of δ.

A.2.1. Small ∆: location of the bifurcation point

We start by looking at the asymptotics for ∆ � 1. We first eliminate all terms in
(A 6) which must be sub-dominant, obtaining

a4σ
4 + b3σ

3 − c2∆σ 2 + b0δ
2 ≈ 0. (A 7)

There will always be a negative, order-unity solution σ ∼ −b3/a4; all other roots of
the quartic must be small in magnitude. Taking σ � 1 and retaining only possible
dominant terms, we can reduce the equation further to the cubic

b3σ
3 − c2∆σ 2 + b0δ

2 ≈ 0. (A 8)
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The bifurcation can occur if all three of these terms are of the same order. This
requires σ ∼ δ2/3 and ∆ ∼ δ2/3, so we set σ = δ2/3Σ and ∆ = δ2/3D, with Σ and D of
order unity, to obtain

f (Σ) ≡ b3Σ
3 − c2DΣ2 + b0 ≈ 0. (A 9)

It is apparent by inspection that for sufficiently large D, (A 9) will have three
real roots, while for smaller values of D there will be only one real root and two
complex ones. We locate the bifurcation point by requiring f (Σ) = 0 and f ′(Σ) = 0
simultaneously, yielding

b3Σ
3 − c2DΣ2 + b0 = 0 and 3b3Σ

2 − 2c2DΣ = 0. (A 10)

As Σ =0 is not an admissible possibility, the bifurcation must occur when

Σ =
2c2D

3b3

and thus b3

(
2c2D

3b3

)3

− c2D

(
2c2D

3b3

)2

+ b0 = 0, (A 11)

finally yielding

−4c3
2D

3

27b2
3

+ b0 = 0 ⇐⇒ D =

(
27b2

3b0

4c3
2

)1/3

, and hence Σ =

(
2b0

b3

)1/3

. (A 12)

Comparisons (not shown) of (A 12) with numerical solutions of (3.38) suggest that
these asymptotics capture the behaviour of the solutions well.

A.2.2. Regular perturbation to σ0

When ∆ = O(1), we expect that there will be a solution branch with σ ≈ σ0. To
locate this branch, we set σ = σ0 + σ1 in (A 6), obtaining an equation of the form

A4σ
4
1 + A3σ

3
1 + A2σ

2
1 + A1σ1 + B0δ

2 = 0, (A 13)

where all constants except δ and σ1 are implicitly of the order of 1, though not
necessarily positive. Seeking a regular perturbation so σ1 � 1, this reduces to

A1σ1 + B0δ
2 ≈ 0, i.e. σ1 ∼ −B0

A1

δ2. (A 14)

Thus, the effect of matrix evolution on the growth rate of instabilities is negligibly
small, O(δ2), as long as we are away from the δ = 0 stability boundary.

A.2.3. Behaviour as ∆ → −∞
Finally, we investigate the behaviour of the dominant solution branch as ∆ → −∞.

Taking σ ∼ ∆α for some α, we find two possibilities. If α =1 then we have a balance
between the σ 4, σ 3 and σ 2 terms, and it is easy to show that both resulting solutions
have negative real part. More interestingly, for any negative value of α we find that
the balance must be between the σ 2 and σ 0 terms, eventually giving solutions of the
form

σ ∼ ± δ

∆
k0φ0

(
−256π4 + 320π2m2 + 64m4

9m4

)1/2

, (A 15)

regardless of the value of α chosen. The leading-order terms here are imaginary, which
means that these solution branches must then have real part smaller than O(δ/∆).
This is consistent with figure 2.
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Appendix B. Numerical validation and sensitivity testing
B.1. Implementation

The dimensionless system (2.12)–(2.15) was written in streamfunction form as

∇ ·
[(

1 +
φ′

φ0

)−2

∇ψ ′
]

= −RC

∂C ′

∂x
, (B 1)(

1 +
φ′

φ0

)
∂C ′

∂t
+

∂ψ ′

∂x
+

(
∂ψ ′

∂x

∂C ′

∂z
− ∂ψ ′

∂z

∂C ′

∂x

)
= (φ0 + φ′)∇2C ′

+
∂φ′

∂z
+

(
∂φ′

∂x

∂C ′

∂x
+

∂φ′

∂z

∂C ′

∂z

)
− k0

(
1 +

φ′

φ0

)
(1 − (φ0 + φ′))

(1 − φ0)
C ′, (B 2)

∂φ′

∂t
= −δk0(φ0 + φ′)

(1 − (φ0 + φ′))

(1 − φ0)
C ′, (B 3)

where u′ = −∂ψ ′/∂z and w′ = ∂ψ ′/∂x. This formulation eliminates the need to include
pressure and impose continuity and makes the numerical integration significantly
easier. The corresponding form of the boundary conditions (3.6) is

∂ψ ′

∂x
= 0 and C ′ = 0 at z = 0 and z = 1. (B 4)

This system was integrated using the finite element package Comsol Multiphysics
v3.5a. Numerical experiments were conducted both with zero initial conditions and
with initial conditions into which a small periodic perturbation had been introduced,

C ′(x, z, 0) = z(1 − z)ε sin(πx), φ(x, z, 0) = φ0 + 0.01z(1 − z) sin(πx), (B 5)

where ε = 10−3. There was no perceptible difference between the results for the two
cases.

B.2. Validation

The overall performance of the model was verified both for convection with no
reaction or porosity evolution and for convection with a reaction but no porosity
evolution. In both cases, the model reproduced the linear stability results found in
§ 3; details are given in § 4.1.

In order to check the convergence of our numerical model, simulations for
0 � t � 5000 were conducted using two different reaction rates, k0 = 0 and k0 = 10,
and four different Rayleigh numbers: the critical Rayleigh number given by (3.26),
and 10 %, 20 % and 50 % above this value. Each simulation was conducted using
4480 triangular mesh elements; absolute tolerances were varied between 10−3 and 10−6

while relative tolerances were varied between 10−2 and 10−5. For each simulation,
we noted the values for the maximum and minimum porosity φ, the maximum and
minimum concentration perturbation C ′, and the maximum absolute velocity |u| over
all time steps; we also plotted the maximum absolute velocity against time for each
set of tolerances to check for convergence over all time steps. A relative tolerance of
10−3 and an absolute tolerance of 10−4 were found to give convergence of all key
quantities to four significant figures while maintaining a reasonable solution time.

The mesh independence of the numerical method was tested similarly by conducting
simulations with 1120, 4480, 17 920 and 71 680 triangular mesh elements and using
the same reaction rates and Rayleigh numbers as used for the tolerance testing. Each
simulation lasted 5000 time units and used a relative tolerance of 10−3 and an absolute
tolerance of 10−4. The same metrics as before were used to assess convergence.
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Figure 15. Maximum |u| throughout the whole domain when k0 = 10 for (a) RC = Rcrit
C,0,

(b) RC = 1.1Rcrit
C,0, (c) RC = 1.2Rcrit

C,0 and (d ) RC =1.5Rcrit
C,0. Lines represent solutions with

different mesh elements: solid line, 1120; dashed line, 4480; dash-dotted line, 17 920; dotted
line, 71 680 mesh elements.

When no reaction occurred (k0 = 0), the solution was essentially mesh-independent;
steady convection developed when the Rayleigh number was above the threshold
Rcrit

C,0, and all key quantities converged to three significant figures as long as at least
4480 mesh elements were employed.

The mesh-dependence at higher reaction rates is more subtle, as illustrated in
figure 15. It is apparent from this that 1120 mesh elements are insufficient to resolve
the behaviour consistently, whereas for 4480 or more mesh elements the evolution
is qualitatively similar. However, particularly for the convective cases with Rayleigh
numbers 10 %, 20 % and 50 % above the critical value, increasing the number of
mesh elements results in the porosity evolving for longer before the first phase shift,
signified by the reversal in porosity evolution. We also see that the maximum absolute
velocity behaves in a similar way when we use at least 4480 mesh elements (figure 15).
As the number of mesh elements is increased, the resolution of the numerical solution
is increased and less numerical noise is encountered. Therefore, the porosity evolution
can continue for longer before triggering an instability in the form of a phase
shift. Since each solution displayed the same behaviour when at least 4480 elements
were used, we concluded that 4480 elements were sufficient for mesh independence.
However, it is important to note that the inception of the secondary instability is
sensitive to the amount of numerical error introduced into the system.
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