Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Effect of friction and back pressure on the formability of superplastically formed aluminium alloy sheet

Wood, Paul and Qarni, Muhammad Jawad and Rosochowski, Andrzej (2011) Effect of friction and back pressure on the formability of superplastically formed aluminium alloy sheet. In: SheMet Conference 2011, 2011-04-17 - 2011-04-20.

[img] PDF (Effect of friction and back pressure on the formability of superplastically formed aluminium alloy sheet)
KEM.473.532.pdf - Preprint

Download (815kB)

Abstract

This paper examines the effect of friction and back pressure on the formability of superplastically formed aluminium alloy AA7475 sheet at the temperature of 517 °C. Several experiments with lubrication and back pressure are performed using a simple box shape tool cavity. The coefficient of Coulomb friction between the formed sheet and tool has been determined indirectly using a finite element model to simulate superplastic forming of the box shape. Typical values determined for all lubricant conditions tested are in the range 0.1 < μ < 0.2. The void growth with strain was determined directly from measurements as a function of back pressure. The results show the application of back pressure at 1 MPa reduces the growth of voids from 7% to 0.3% void volume fraction at a logarithmic thickness strain of 0.65. This paper reports back pressure has a significantly greater role than friction in enhancing the formability of the alloy