Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


Simulation of high power broadband cyclotron autoresonance maser amplifier and electron beam experiments

Speirs, David and Phelps, A.D.R. and Konoplev, I.V. and Cross, A.W. and He, W. (2004) Simulation of high power broadband cyclotron autoresonance maser amplifier and electron beam experiments. Review of Scientific Instruments, 75 (4). pp. 826-831. ISSN 0034-6748

Full text not available in this repository. Request a copy from the Strathclyde author


The design, simulation, and preliminary experimental implementation of an efficient, broadband cyclotron autoresonance maser (CARM) amplifier operating over the 9-13 GHz frequency band is presented. The amplifier is based on a high current accelerator capable of generating a ~35 A pencil electron beam at an accelerating voltage of ~450 kV. A full three-dimensional numerical model of the CARM amplifier has been constructed within the particle-in-cell code KARAT taking into account electron beam parameters derived from simulation and experiment. An electron beam current of 32A at an accelerating voltage of 400 kV was measured. Numerical simulations demonstrate the possibility of obtaining 37 dB gain and an interaction efficiency of 17%. In addition a viable amplification bandwidth of 9-13 GHz is apparent, with a minimum gain and efficiency of 25 dB and 10%, respectively, at the boundaries of the amplification band. The peak modeled efficiency and gain (17%, 37 dB) were obtained at a frequency of 12 GHz. Computational simulations have also revealed correlation between the instantaneous amplification bandwidth and the spectral width of cyclotron superradiant emission within the system.