Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Microwave pulse compression using a helically corrugated waveguide

Burt, Graeme and Samsonov, S.V. and Phelps, A.D.R. and Bratman, V.L. and Ronald, K. and Denisov, G.G. and He, W. and Young, A.R. and Cross, A.W. and Konoplev, I.V. (2005) Microwave pulse compression using a helically corrugated waveguide. IEEE Transactions on Plasma Science, 33 (2). pp. 661-667. ISSN 0093-3813

[img] PDF (BURT et al Author's POST-PRINT 2005)
BURT_et_al_Author_s_POST_PRINT_2005.pdf - Submitted Version

Download (260kB)

Abstract

There has been a drive in recent years to produce ultrahigh power short microwave pulses for a range of applications. These high-power pulses can be produced by microwave pulse compression. Sweep-frequency based microwave pulse compression using smooth bore hollow waveguides is one technique of passive pulse compression, however, at very high powers, this method has some limitation due to its operation close to cutoff. A special helical corrugation of a circular waveguide ensures an eigenwave with strongly frequency dependent group velocity far from cutoff, which makes the helically corrugated waveguide attractive for use as a passive pulse compressor for very high-power amplifiers and oscillators. The results of proof-of-principle experiments and calculations of the wave dispersion using a particle in cell particle-in-cell (PIC) code are presented. In the experiments, a 70-ns 1-kW pulse from a conventional traveling-wave tube (TWT) was compressed in a 2-m-long helical waveguide. The compressed pulse had a peak power of 10.9 kW and duration of 3 ns. In order to find the optimum pulse compression ratio, the waveguide's dispersion characteristics must be well known. The dispersion of the helix was calculated using the PIC code Magic and verified using an experimental technique. Future work detailing plans to produce short ultrahigh power gigawatt (GW) pulses will be discussed.