Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Automated design knowledge capture and representation in single-user CAD environments

Sung, Raymond C.W. and Ritchie, J.M. and Rea, Heather and Corney, Jonathan (2010) Automated design knowledge capture and representation in single-user CAD environments. Journal of Engineering Design. pp. 1-17. ISSN 0954-4828

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Current computer-aided design systems excel at recording the final design solution for an engineering problem; however, they are not as adept at capturing the individual designer's rationale, knowledge or the process used during the design session. Being able to access this information will give insight into the reasons why key design decisions were made which, in turn, will support engineers who have to make revisions to the product in the future. Therefore, it would be beneficial if CAD systems were able to record design knowledge automatically. The research in this paper attempts to address this issue with a system that unobtrusively captures design processes and design knowledge by logging individual designer behaviour and system interactions while a CAD system is being used; user trials generated around 700 log files that were then analysed to extract these. In addition, various CAD system-independent representations were output to give a visual and formal representation of the processes that occurred. Overall, although carried out within a constrained design environment, this early knowledge capture work demonstrates the potential for automated knowledge capture and subsequent representations within CAD environments as well as the feasibility of design information push.