Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Creep and creep modelling of a multimodal nickel-base superalloy

Coakley, James and Dye, David and Basoalto, Hector (2011) Creep and creep modelling of a multimodal nickel-base superalloy. Acta Materialia, 59 (3). 854–863. ISSN 1359-6454

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The creep properties of different γ'-Ni3Al distributions in the Ni115 nickel superalloy produced by heat treatment have been examined. At the stresses and temperatures employed it is shown that particle bypass cannot occur by cutting or bowing and so presumably occurs by a climb-glide motion. The creep strength of Ni115 is very poor at 800 °C and 360 MPa compared to 700 °C because the increase in coarsening rapidly removes the bimodal structure. The Dyson creep model is a microstructure-based climb-glide bypass model for unimodal distributions that links microstructural evolution (e.g. evolution of the particle dispersion) to the creep rate. The creep tests are interpreted with the aid of the model and appear to suggest that the fine γ', when present, strongly influences the dislocation motion. A quasi-bimodal model is developed to account for bimodal distributions and the predictions compared to experiment. The model predicts a number of the observed experimental trends, and it's shortcomings are identified in order to identify avenues for future improvement.

Item type: Article
ID code: 30635
Keywords: nickel alloys, modelling, creep, creep modelling, Engineering (General). Civil engineering (General), Polymers and Plastics, Metals and Alloys, Ceramics and Composites, Electronic, Optical and Magnetic Materials
Subjects: Technology > Engineering (General). Civil engineering (General)
Department: Faculty of Engineering > Design, Manufacture and Engineering Management
Related URLs:
Depositing user: Pure Administrator
Date Deposited: 09 May 2011 10:11
Last modified: 27 Mar 2014 09:19
URI: http://strathprints.strath.ac.uk/id/eprint/30635

Actions (login required)

View Item