Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Near-infrared fluorescence lifetime assay for serum glucose based on allophycocyanin-labeled concanavalin A

McCartney, Lydia J. and Pickup, John C. and Rolinski, Olaf J. and Birch, David J.S. (2001) Near-infrared fluorescence lifetime assay for serum glucose based on allophycocyanin-labeled concanavalin A. Analytical Biochemistry, 292 (2). pp. 216-221. ISSN 0003-2697

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We describe an assay scheme for glucose based on fluorescence resonance energy transfer (FRET) between concanavalin A (con A), labeled with the nearinfrared fluorescent protein allophycocyanin (APC) as donor, and dextran labeled with malachite green (MG) as acceptor. Glucose competitively displaces dextran- MG and leads to reduction in FRET, assessed by time-domain fluorescence lifetime measurements using time-correlated single-photon counting. The assay is operative in the glucose concentration range 2.5-30 mM, and therefore suitable for use in monitoring diabetes control. Albumin and serum inhibit FRET but the interference can be prevented by removal of high molecular weight substances by membrane filters. APC shows promise for incorporation in an implanted glucose sensor which can be interrogated from outside the body.