Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Near-infrared fluorescence lifetime assay for serum glucose based on allophycocyanin-labeled concanavalin A

McCartney, Lydia J. and Pickup, John C. and Rolinski, Olaf J. and Birch, David J.S. (2001) Near-infrared fluorescence lifetime assay for serum glucose based on allophycocyanin-labeled concanavalin A. Analytical Biochemistry, 292 (2). pp. 216-221. ISSN 0003-2697

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We describe an assay scheme for glucose based on fluorescence resonance energy transfer (FRET) between concanavalin A (con A), labeled with the nearinfrared fluorescent protein allophycocyanin (APC) as donor, and dextran labeled with malachite green (MG) as acceptor. Glucose competitively displaces dextran- MG and leads to reduction in FRET, assessed by time-domain fluorescence lifetime measurements using time-correlated single-photon counting. The assay is operative in the glucose concentration range 2.5-30 mM, and therefore suitable for use in monitoring diabetes control. Albumin and serum inhibit FRET but the interference can be prevented by removal of high molecular weight substances by membrane filters. APC shows promise for incorporation in an implanted glucose sensor which can be interrogated from outside the body.