Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

MOCVD growth and characterisation of ZnS/ZnSe distributed Bragg reflectors and ZnCdSe/ZnSe heterostructures for green VCSEL

Kuznetsov, P I and Shchamkhalova, B S and Jitov, V A and Yakushcheva, G G and Kozlovsky, V I and O'Donnell, K P and Trager-Cowan, C and Edwards, P R (2001) MOCVD growth and characterisation of ZnS/ZnSe distributed Bragg reflectors and ZnCdSe/ZnSe heterostructures for green VCSEL. Physics of Low-Dimensional Structures, 11 (2). pp. 271-278. ISSN 0204-3467

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

High reflectivity ZnS/ZnSe distributed Bragg reflectors (DBR) have been grown on GaAs(100) substrates using metallorganic chemical vapour deposition technique. It was found that the surface roughness, which limits the ZnS/ZnSe DBR mirror reflectivity, may be reduced using the interruption of chalcogen-contained flow before each successive layer growth. The DBR mirrors have been obtained with reflectivity as high as 99% and 94% at the wavelengths of 478 nm and 520 nm, respectively. The ZnCdSe/ZnSe QW structure grown on the ZnS/ZnSe DBR mirror manifests cathodoluminescence at room temperature whose intensity is an order of magnitude less than that of the similar structure grown on ZnSe buffer. Large lattice mismatch between ZnS and ZnSe layers results in high density of defects in ZnCdSe/ZnSe QW structures grown on. the DBR.