Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

MOCVD growth and characterisation of ZnS/ZnSe distributed Bragg reflectors and ZnCdSe/ZnSe heterostructures for green VCSEL

Kuznetsov, P I and Shchamkhalova, B S and Jitov, V A and Yakushcheva, G G and Kozlovsky, V I and O'Donnell, K P and Trager-Cowan, C and Edwards, P R (2001) MOCVD growth and characterisation of ZnS/ZnSe distributed Bragg reflectors and ZnCdSe/ZnSe heterostructures for green VCSEL. Physics of Low-Dimensional Structures, 11 (2). pp. 271-278. ISSN 0204-3467

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

High reflectivity ZnS/ZnSe distributed Bragg reflectors (DBR) have been grown on GaAs(100) substrates using metallorganic chemical vapour deposition technique. It was found that the surface roughness, which limits the ZnS/ZnSe DBR mirror reflectivity, may be reduced using the interruption of chalcogen-contained flow before each successive layer growth. The DBR mirrors have been obtained with reflectivity as high as 99% and 94% at the wavelengths of 478 nm and 520 nm, respectively. The ZnCdSe/ZnSe QW structure grown on the ZnS/ZnSe DBR mirror manifests cathodoluminescence at room temperature whose intensity is an order of magnitude less than that of the similar structure grown on ZnSe buffer. Large lattice mismatch between ZnS and ZnSe layers results in high density of defects in ZnCdSe/ZnSe QW structures grown on. the DBR.