Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Low-voltage cross-sectional EBIC for characterisation of GaN-based light emitting devices

Moldovan, Grigore and Kazemian, Payani and Edwards, Paul R. and Ong, Vincent K. S. and Kurniawan, Oka and Humphreys, Colin J. (2007) Low-voltage cross-sectional EBIC for characterisation of GaN-based light emitting devices. Ultramicroscopy, 107 (4-5). pp. 382-389. ISSN 0304-3991

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Electron beam induced current (EBIC) characterisation can provide detailed information on the influence of crystalline defects on the diffusion and recombination of minority carriers in semiconductors. New developments are required for GaN light emitting devices, which need a cross-sectional approach to provide access to their complex multi-layered structures. A sample preparation approach based on low-voltage Ar ion milling is proposed here and shown to produce a flat cross-section with very limited surface recombination, which enables low-voltage high resolution EBIC characterisation. Dark defects are observed in EBIC images and correlation with cathodoluminescence images identify them as threading dislocations. Emphasis is placed on one-dimensional quantification which is used to show that junction delineation with very good spatial resolution can be achieved, revealing significant roughening of this GaN p-n junction. Furthermore, longer minority carrier diffusion lengths along the c-axis are found at dislocation sites, in both p-GaN and the multi-quantum well (MQW) region. This is attributed to gettering of point defects at threading dislocations in p-GaN and higher escape rate from quantum wells at dislocation sites in the MQW region, respectively. These developments show considerable promise for the use of low-voltage cross-sectional EBIC in the characterisation of point and extended defects in GaN-based devices and it is suggested that this technique will be particularly useful for degradation analysis. (c) 2006 Elsevier B.V. All rights reserved.

Item type: Article
ID code: 30532
Keywords: EBIC, GaN, diffusion, dislocations, surface recombination velocity, beam-induced-current, diffusion length, line scan, Physics, Instrumentation, Atomic and Molecular Physics, and Optics, Electronic, Optical and Magnetic Materials
Subjects: Science > Physics
Department: Faculty of Science > Physics
Related URLs:
    Depositing user: Pure Administrator
    Date Deposited: 18 May 2011 14:52
    Last modified: 05 Sep 2014 08:24
    URI: http://strathprints.strath.ac.uk/id/eprint/30532

    Actions (login required)

    View Item