
 1

IAC-10-C1.9.8

INCREMENTAL SOLUTION OF LTMGA TRANSFERS
TRANSCRIBED WITH AN ADVANCED SHAPING APPROACH

Daniel Novak
PhD Candidate, Department of Aerospace Engineering, University of Glasgow, UK

dnovak@ eng.gla.ac.uk

Massimiliano Vasile

Senior lecturer, Department of Aerospace Engineering, University of Glasgow, UK
mvasile@eng.gla.ac.uk

ABSTRACT

In the last decade the global optimisation of low-thrust multi-gravity assist transfers (LTMGA) has been tackled
with different approaches. Some authors proposed to generate a first guess solution by building a multi-gravity assist
transfer with impulsive manoeuvres and then using a direct or an indirect method to transcribe the multi-impulse
arcs into low-thrust arcs. Other authors, notably Petropoulos et al. (2002), De Pascale et al. (2006), Wall et al.
(2008) and Schütze et al. (2009), proposed the use of several forms of trajectory shaping to model low-thrust arcs.
The disadvantage in all these studies is that the swingbys are powered and therefore suggest the use of high thrust
propulsion along with the low thrust propulsion on board the spacecraft. The problem generally resides in the lack of
flexibility of the low thrust trajectory models to satisfy a variety of boundary conditions. In this paper, a spherical
shaping model is used whereby all encountered types of boundary constraints are satisfied analytically. Furthermore,
a special incremental pruning of the search space is performed before employing a global optimiser. The process is
conceptually equivalent to the approach proposed by Becerra et al. for the search space pruning of multi-gravity
assist trajectories and exploits the decoupling of pairs of transfer arcs. Such decoupling removes the dependency of
one arc from all those that are two or more before, and allows for pruning the search space in polynomial time.
Numerical examples are presented for LTMGA transfers from Earth to asteroid Apollo and Earth to Jupiter.

INTRODUCTION

The development of electric propulsion for space
missions has already given rise to successful
missions, like Deep Space 1 [1] and SMART-1 [2].
The increased specific impulse can result in savings
in propellant mass for a broad class of mission types.
As of today, NASA’s Dawn spacecraft is currently
heading towards asteroid Vesta and is equipped with
an ion thruster. The European Space Agency’ is
preparing to send a cornerstone mission called
BepiColombo to Mercury. Solar electric propulsion
will be used for that mission. The design of
trajectories for these types of missions is more
complex than for those employing chemical
propulsion due to the need to optimize thrust profiles
instead of impulses. This makes low thrust mission
analysis mathematically and computationally a
challenging task.

What makes the trajectory optimization problem
even more complex for missions like Dawn and
BepiColombo is the use of gravity assists. Each
gravity assist adds dimensions to the global problem.
Since these problems multitudes of local minima,
global optimization is unavoidable to obtain the most
interesting trajectories.
Before the eighties, multiple gravity assist (MGA)
trajectories were computed with ad hoc methods. It
was during the design of the Galileo mission in the
eighties that the first codes to compute large sets of
trajectories, using impulsive manoeuvres. These
codes gave rise later to STOUR [3]. Williams and
Longuski [4] automated the MGA search. STOUR
was then used extensively by Petropoulos et al. [5]
for assessing a large number of mission scenarios to
Jupiter. They also applied STOUR with a model for
low thrust transfers called exponential sinusoids [6].
With the development of the field of global
optimisation, different approaches were tested in
order to seduce the computational time to find
interesting regions in the search space, for both high

 2

thrust and low thrust transfers. These approaches
included differential evolution [7], particle swarm
optimization [7], evolutionary branching [8] and
simulated annealing [9]. Evolutionary neurocontrol
was also applied successfully by Carnelli et al. [10]
to the low thrust MGA (LTMGA) problems.
However the disadvantage in the current techniques
of solving LTMGA problems is that gravity assists
involve impulsive manoeuvres, such that both a low
thrust and a high thrust propulsion system is assumed
on board. There is therefore no method today to
compute LTMGA trajectories without employing
high thrust manoeuvres, unless local constrained
optimizations are performed inside the global
optimization [9]. The problem resides in the lack of
flexibility of the low-thrust trajectory models. The
exponential sinusoids [11] have the disadvantage of
being a planar model and one cannot impose
boundary constraints on velocity and time of flight
together. Pseudo-equinoctial elements, proposed by
Vasile et al. [12] can provide first guess trajectories
satisfying boundary constraints, time of flight
constraint and thrust constraints. However, the
satisfaction of the boundary constraints relies on the
convergence of a Newton loop, due to the fact that
pseudo-equinoctial elements are not osculating.
Novak and Vasile [13] formulated a flexible shaping
method based on spherical coordinates for which
combination of boundary constraints on position and
velocity can be solved analytically. This paper
applies the latter shaping to the LTMGA problem in
order to compute transfers employing only low thrust
manoeuvres. Avoiding powered swingbys has a
further the advantage of reducing the dimension of
the search space.
Moreover, to further reduce the size of the search
space, an incremental pruning technique is employed
in this study. Incremental pruning has been proposed
by Becerra et al. [14] on MGA missions and is based
on the construction of sets of MGA trajectories, one
leg at a time, and removing subsets that do not
satisfy a given criterion, e.g. ∆v of the leg too high.
The approach exploits the decoupling of the transfer
arcs offered by the powered swing-by model. Such
decoupling removes the dependency of one arc from
the preceding ones, and allows for pruning the search
space in polynomial time. The final pruned space can
then be explored with a global optimizer. Vasile,
Schütze et al. used the exponential sinusoid model
[15] to apply incremental pruning to LTMGA
problems with powered swingbys.
The present study’s aim is to avoid powered
swingbys. In that case each leg cannot be completely
decoupled from the others. The issue is solved by
adapting the incremental pruning whereby the
decoupled entities are pairs of legs. The pruning

remains therefore of polynomial complexity with
respect to the number of legs.
Numerical examples are provided for LTMGA
transfers from Earth to Jupiter and Earth to Mercury.

1 TRAJECTORY SHAPING

This section explains the shaping method used to
generate the trajectories for each leg of multiple
gravity-assist trajectories. More detailed derivations
and discussions can be found in [13] A trajectory
model based on shaping the spherical coordinates is
described. The last subsection describes the method
used to satisfy time of flight constraints.

1.1 Shaping the Spherical Coordinates

In the proposed model, the spacecraft’s position is
expressed in the spherical coordinates

() ()*, , / 22r θ ϕ ππ π+∈ × × − +ℝ ℝℝ
ℤ ℤ

, where r is

the distance from the central body, θ is the azimuthal
angle and is φ the elevation angle. If the trajectory
was parametrized by the time, the state vector would

be (), , , , ,
T

r rθ ϕ θ ϕɺ ɺɺ . Here we assume that the

trajectory can be parametrized by θ, i.e.

()r R θ= , ()ϕ θ= Φ and ()t T θ= , so that the

azimuthal angle swaps role with the time t. This can
be done if there is a smooth mapping between t and
θ, which implies that θ is strictly monotonous with
respect to time. The state vector becomes thus

(), , , , ,
T

x r t r tϕ ϕ′ ′ ′= where the prime represents a

derivative with respect to θ. Due to this
parametrization, the poles need to be excluded from
the set of admissible positions and we have to allow
θ to account for the nr revolutions of the trajectory.
The configuration space W is defined hence as

()* ; 2 2; 2i f rW n+  = × + × − ℝ θ θ π π π .

The equations of motion in an inertial reference
frame satisfied by the spacecraft are given by

2

2 3

d

dt r
= − +µr r

u (1)

where the position vector is

()cos cos , sin cos , sin
T

r r rθ ϕ θ ϕ ϕ=r . If the

position vector is parametrized by θ the equations of
motion become:

 3

2
2

2 3

d d

dd r
θ θ µ

θθ
+ = − +ɺ ɺɺr r r

u (2)

Note that 1/ tθ ′=ɺ and 3/t tθ ′′ ′= −ɺɺ . The control
vector is obtained straight from equation (2), after
having inserted the expression of r as a function of
the spherical coordinates.
At this point, one can provide R, Φ and T, i.e. one
can “shape” r, φ and t, and the corresponding control
profile can be obtained, along with the ∆v and the
propellant consumption if the spacecraft’s initial
mass and specific impulse are provided. R and Φ
model the pure geometry of the trajectory, while T
shapes the dynamics along the trajectory. It is
assumed that shaping functions R, Φ and T belong to
a set of admissible functions SR, SΦ and ST that are
continuously differentiable twice.

We define ()/ rd d v v vθ ϕθ= =ɶ ɶ ɶ ɶv r , = ∧ɶ ɶh r v

and ()/ rd d a a aθ ϕθ= =ɶ ɶ ɶ ɶ ɶa v and the flight path

angle is denoted here by γ.
It can be shown that t satisfies

2 2 cos
nuD µ

= +
γT R′

 (3)

where D is given by

()
()

()
()2 2 2 2 2

D
R v v R v v

⋅ ∧ ⋅ ∧
= =

+ +

ɶɶ ɶ

ɺɶ ɶθ ϕ θ ϕθ

a h v a h v
 (4)

So if we define the function T0 by

2
2

0

DR
T ′ =

µ
 (5)

And assume that the time evolution T is shaped by
T0, then the control vector corresponding to the
geometrical trajectory defined by R and Φ will have
no component out of the tangential plane to the
trajectory (0nu =). There is a restriction on the

shape of the trajectory for which this control strategy
is allowed, it is expressed by 0D > . Physically
speaking, the plane generated by tangential and out-
of-plane vectors (or all the allowed control vectors)
divides the space in two, and the centre of curvature
of the trajectory at every point must be on the same
side of the plane as the central body. This makes
sense, because if the acceleration points outwards
from the central body with respect to the plane of
allowed controls, then a control component outside
of the latter plane is required to compensate the

gravitational pull of the central body and therefore
0nu ≠ . In the particular case of a two dimensional

trajectory, we obtain

2

3cos

cR
D =

γ
 (6)

where c is the algebraic curvature of the trajectory.
Thus 0D > if the curvature is positive. The time of
flight and the ∆v corresponding to the trajectory are

obtained by integration over ; 2i f rnθ θ π +  of

T ′ and T ′u respectively.

The disadvantage of fixing 0T T= is that R and Φ

define completely T ′ and the time of

flight () ()f iT Tθ θ− . This can be problematic when

a constraint on the time of flight exists. The
advantage is that it is difficult to shape a priori T in a
way to obtain a control that is not too far from
optimal, i.e. interesting in practice, therefore using
such an expression for T ′ will result, for certain
transfers (see section 3), in reasonable thrust profiles
and ∆v. By imposing 0nu = , the in-plane motion is

controlled only by the tangential component of the
control, which is the most efficient way to vary the
energy of the osculating orbit. Such shaping for T
was chosen in this study; only SR and SΦ need to be
defined in this way.
R and Φ can be in any function space such that

0R > and 2 2π π− < Φ < , but it is judicious to

choose expressions for which the boundary
constraints on the position and velocity can be solved
analytically. The boundary conditions are written in
equations (7).

() ()
() ()
() ()
() ()
() ()

2n

2n

coscos
2n

2n

2n

i i f r f

i i f r f

f fi i
i f r

θi θf

i ri f r rf

i f
i f r

i f

R θ = R R θ + π = R

Φ θ = Φ Φ θ + π = Φ

R ΦR Φ
T θ = T θ + π =

v v

R θ = v R θ + π = v

v v
Φ θ = Φ θ + π =

R R
ϕ ϕ







′ ′



′ ′

 ′ ′


(7)

Note that the boundary conditions on T ′ turn into
boundary conditions on R′′ and ′′Φ , as shown in (8).

() ()
() ()

i i i i

f f f f

R t t C

R t t C

α
α

′′ ′′ + Φ =
 ′′ ′′+ Φ =

 (8)

 4

There are hence 10 boundary conditions, so unless
there are more than 10 parameters that can be set in
R and Φ combined, the time of flight is uniquely
defined.
In the examples in this paper, SR and SΦ are the set of
functions that take the form:

() ()
() ()

2
0 1 2 3 4 5 6

0 1 2 3

1

cos sin

cos sin

R
a a a a a a a

b b b b

 = + + + + + +
Φ = + + +

θ θ θ θ θ θ

θ θ θ θ

 (9)

Expressing the radius and the elevation angle in these
forms has the advantage of covering the Keplerian
unperturbed arc, provided that the trajectory is by the
spherical coordinates derived from the rotated
inertial frame whose (x-y) plane is defined by the
initial position and velocity vectors.
11 coefficients are to be determined by the boundary
conditions and a constraint on the time of flight.
Subsection 1.2 explains the method used to solve
time of flight constraints.
It must be mentioned that due to the ability to solve
analytically the boundary conditions, one can apply
any subset of constraints from the set in (7), after
adjusting the number of undetermined coefficients in
(9). For example, one can impose the boundary
conditions on the position at both tips and on the
velocity at arrival only. In that case, the number of
constraints is three less, and two coefficients are set
to zero in the expression of R and on in the
expression of Φ. As will be explained, this is what
happens in the last leg of the pruning phase.

1.2 Satisfaction of the time of flight constraint

In this subsection it is explained how the time of
flight constraint is satisfied exactly.
The expressions for the shaping functions in (9)
involve a number of coefficients that can be used for
satisfying several constraints. The boundary
constraints account for ten of them. The time of
flight constraint sets the value of an additional
coefficient or parameter. Since the time of flight
depends non-linearly with respect to the additional
unknown, a Newton loop is applied to solve the
constraint.
The coefficient a2 in (9) is initially set to zero and
within each iteration of the Newton loop the other 10
coefficients are computed analytically from (7) and
(8).
Using a Newton loop for satisfying time of flight
constraints in the described manner preserves the
assumptions made on the trajectory by assigning
expressions to T’ such as in (5). However due to the

non-linear nature of the time of flight constraint, the
Newton loop can fail to reduce the time of flight
violation Tviol to zero.
If that scenario happens another method is applied
after the Newton loop. The time evolution T is
modified in such a way that the time of flight is
satisfied exactly. At the exit of the Newton loop, one
reshapes T by assigning it the new expression

0 violT T T χ= − where

() () ()()6
i

i f

f i

u u du= − − −
− ∫

θ

θ
χ θ θ θ

θ θ
 (10)

It can be verified that () () 0i f′ ′= =χ θ χ θ and

therefore T′ takes the same values at the boundaries

as 0T ′ , so the boundary constraints are not affected.

Moreover, because () () 1f i− =χ θ χ θ , the time of

flight () ()f iT T−θ θ will be the exact desired time

of flight.
Reshaping T in such a way can alter the control
profile considerably and can potentially result in
higher ∆vs, if the value of violT becomes high.

Furthermore, for higher values of violT , T′ can

become zero along the trajectory. If that happens, the
control profile will exhibit a singularity, since

1/ t′=ɺθ and 3/t t′′ ′= −ɺɺθ .

2 LINEAR QUADRATIC CONTROLLER

In this section the method used to improve in a fast
way low-thrust transfers is explained. In practice,
this approach is applied to the transfers generated by
the shaping methods. The objective is to cope with
the arbitrariness of the choice to model the state
vector x. The rationale behind this approach is that
there may be an easily computable trajectory in the
vicinity of the shaped trajectories that is better in
terms of the given objective function. It is not
intended at this stage to come up with an optimal
trajectory, but to obtain improved trajectories that
cannot be modelled by the shaping functions that
were used at the previous step of the trajectory
design. A more detailed derivation exists in [16].

Let’s assume that a spacecraft, whose position is r
and velocity is v, is subject to the gravitational pull
of a central body. Additionally the spacecraft has an
onboard controllable propulsion system that
contributes with an acceleration u to the motion of

 5

the spacecraft. If we define the state vector x as

()TT Tr v then the equations of motion can be

written in the following as ()= +x A x Buɺ .

The equations of motion are then linearized in x and
u around the reference trajectory, at all points of the
time interval I, as in (11), which can be rewritten as
in (12). The control vector of the linearized equations
of motion are denoted lu .

() ()
() () ()()* * *

0 0 0 0 0 0
T

i

l

t

t t t

 =


= + = +
A B A B u uɺ -

ξξξξ

ξ ξ υ ξξ ξ υ ξξ ξ υ ξξ ξ υ ξ
 (11)

() ()
()

1

1 1 1 1

0 0 0 0 0 01
T

i

l

t

t

 =


= + A B uɺ

ξξξξ

ξ ξξ ξξ ξξ ξ
 (12)

The optimal control, corresponding to an
unconstrained optimization problem, where the
dynamics are defined by (12) and where the
objective function is of quadratic form as in (13), can
be put in a feedback form expressed in equation (14)
.

() () 2
1 1
T

f f lI
J t t dt= + ∫Q uξ ξξ ξξ ξξ ξ (13)

1 1
T

l =u B Eξξξξ (14)

E is computed by integrating backwards the Riccati
differential equation in (15).

()
1 1 1 1 ,

f

T T

t

t I

 = −


= − − − ∀ ∈

E Q

E A E EA EB B Eɺ
 (15)

The first term in the objective function will make ξ1
tend towards 0, which is what is required: the
perturbations on the trajectory should not affect the
boundaries. The fact that the last component of ξ1 is
always 1 is not problematic because the choice of Q
is made such that it does not influence the
convergence of the other components of ξ1 towards
0. The expression in (16) is chosen for Q.

3

3

0 0

0 0 , 0, 0

0 0 0

r

v r v

q

q q q

 
 = > > 
 
 

I

Q I (16)

qr is a weight on the final position vector to satisfy
the final boundary constraint, and qv has the same
role but for the velocity. The values for the two
weights were set to 1 in order to satisfy all the time

the boundary conditions at arrival up to relative
violations of 10-6.
Therefore, the optimization requires the integration
of a 7 by 7 matrix differential equation backwards in
time, followed by the forward integration of the
linearised equations of motion using the previously
computed expression of E. The first integration can
be made faster by noting that E is a symmetrical
matrix, hence it is sufficient to compute 28 variables
instead of 49. In order to do that, Matlab’s ‘ode45’
4th-5th order Runge Kutta integrator was used with
relative and absolute tolerances of 10-9.
Once the optimized linearised trajectory (x*+ ξ) is
obtained, the corresponding control law needs to be
updated since it verifies the linearised equations of
motion and not the real ones. The real control law
corresponding to the physical trajectory is calculated
from:

3real l l
lr

= +u r rɺɺ
µ

 (17)

where lr is the position component of x0+ξ. Note

that the approach of keeping the linearised control
law and calculating the corresponding state vectors
by propagation would not only be more
computationally intensive but would not guarantee
that the trajectory would end at the target state
vector.
The error on the control law due to the linearisation
is approximated in [16] to be

()
()
()

0

0

0

31

32

33

T
x

T
y

T
z

u O

u O

u O

∆ = +

∆ = +

∆ = +


r A r r

r A r r

r A r r

ξ H ξ ξ

ξ H ξ ξ

ξ H ξ ξ

r

r

r

 (18)

where , ,
T

x y z l realu u u ∆ ∆ ∆ = −  u u and rξ as the

first three components of ξ , i.e., the change of

position resulting from the LQ controller. One also
has that all of i

AH depends only on 0r and that

()4

0
i O

−=AH r .

A theorem has been proven on the behaviour of the
LQ controller when applied to an optimal initial
trajectory. It states that the LQ controller leaves the
initial trajectory unchanged if and only if the initial
trajectory is already optimal. So in a certain sense,
the result of the LQ controller is a measure of the
optimality of the initial trajectory.
Finally, the total ∆v can be calculated by an
integration of uopt over I. No assumptions are made

 6

on the physical properties of the spacecraft and its
propulsion system, in particular on the initial mass
and the specific impulse, because it was chosen to
model the trajectory in the simplest way. Introducing
the spacecraft’s mass as a variable would raise the
number of differential equations to compute
backwards from 28 to 36 and forwards from 6 to 7.
This would have repercussions on computational
time without necessarily improving the results since
optimizing the L2 norm of the thrust vector does not
yield necessarily better results than optimizing the L2
norm of the acceleration control vector.

3 INCREMENTAL PRUNING

3.1 Background

Incremental pruning is a technique first proposed by
Becerra et al. [14] for finding globally optimum
multiple gravity-assist trajectories. The idea is that if
one can construct the legs of the MGA transfers
independently, then it is possible to prune out whole
sets of transfers if one of the legs does not satisfy
some required criteria. By constructing and assessing
legs one after the other, the space of acceptable
transfers is pruned out incrementally. Once the final
pruned search space for the full problem is obtained,
a global optimisation can be performed on it. It has
been shown that applying such a pruning can
increase the chance of finding the most promising
trajectories.
As introduced by Becerra et al. in their code called
GASP (Gravity Assist Space Pruning), the pruning
relies on a systematic search on the discretised search
space. The problem is formulated in such a way that
the different legs can be constructed independently,
but can also be linked together to form complete
MGA trajectories. In the first form of pruning
introduced by Becerra et al. the legs were Lambert
arcs linked together by powered swingbys. The
search space consisted of a grid of departure dates,
encounter dates for the gravity assist and arrival
dates. All the possible Lambert arcs were constructed
for the first leg and a pruning of the departure and
first gravity-assist dates was performed, based on the
magnitude of the initial relative velocity. If there are
launch dates for which no Lambert arc is acceptable,
then that launch date is pruned out for the problem.
In a similar manner, if no Lambert arc is acceptable
for a given date for the first gravity-assist, then that
date is not considered as starting date for the second
leg. In the next step, all possible second legs are
constructed except for the dates of first gravity-assist
that were pruned out in the previous step. Criteria to
prune out the initial and final dates of the second leg
are based on the maximum thrust constraints and

angular constraints on the incoming and outgoing
relative velocities at the first gravity assist.
The following legs are constructed and pruned out
similarly to the second leg. A constraint on the
relative arrival velocity is imposed during the
pruning of the final leg’s departure and arrival dates.
After the computation of each leg and the pruning of
departure and arrival dates of it, an additional
forward and backward pruning is performed on the
complete space, based on the consideration that if no
Lambert arc arrives on a given date for a gravity
assist, then that date is not considered as departure
date for the next leg, and if no Lambert arc can
depart on a given date, then all Lambert arcs of the
previous leg and arriving on that date are pruned out.
Once the grid space of the complete problem is
pruned, one recovers the acceptable combinations of
intervals for the initial and arrival dates of each leg.
One obtains hence so-called boxes, and a global
optimisation is performed on each. Becerra et al.
applied differential evolution.
The algorithms applied by GASP have been used
with trajectory models that are more complex than
Lamberts arcs. GASP has been tested successfully
when deep space manoeuvres (DSM) is inserted in
each leg [20]. DSMs increase the flexibility of each
leg and represent more realistic missions, to the
expense of an increased dimension of the search
space. The objective in that case is to minimise the
sum of the DSMs’ ∆v and the gravity assists’ ∆v.
Schütze et al. applied GASP with exponential
sinusoids [15][21] as trajectory models for the
problem of optimizing low thrust MGA transfers.
The inconvenience with the latter approach,
however, is that one needs to employ powered
swingbys, with impulsive ∆vs, and suggests therefore
both a chemical and a low-thrust propulsion system
on board the spacecraft.

3.2 Overview of the method

This lack of realism is addressed here, by eliminating
the need of a manoeuvre at the swingby. The issue
arising then is that successive legs cannot be
computed independently, because the outgoing
relative velocity at a gravity assist must be reachable
from the incoming relative velocity obtained in the
previous leg, while setting a limit on the pericenter
radius. For example, the magnitudes of the two
relative velocities must be equal.
Therefore the GASP algorithm has been modified
such that legs are independent in pairs instead of on
their own. The low-thrust trajectory model is such
that legs departing and arriving on given dates
always arrive with the same velocity, but can depart
with different velocities depending on the arrival
velocity of the previous leg.

 7

For the first leg, only Lambert arcs are considered.
For each additional leg, the Lambert arcs are first
computed, and the initial relative velocity is
compared with the previous leg’s arrival relative
velocity. If the two can be matched, then the Lambert
arc is kept, otherwise the initial relative velocity is
modified such that no impulse is required at the
gravity assist. The leg is then recomputed with a low-
thrust trajectory model which can accommodate
boundary constraints on velocity and time of flight.
Hence the departure date ti-1 of the previous leg
defines the incoming relative velocity at the swingby
at date ti, so the outgoing relative velocity too, and
the arrival date ti+1 defines the arrival velocity.

3.3 Gravity assist model

Most often the outgoing relative velocity ()
,
i

i relv at the

beginning of a given leg i cannot be matched with

the incoming one ()1
,

i
f rel

−v , obtained from the previous

leg, without going below the minimum pericenter
radius specified by the user. Then a transformation is
applied to the outgoing relative velocity. The new

relative velocity ()
,
i

i rel′v is such that () ()
, ,
i i

i rel i rel′ −v v is

minimal, while keeping the new velocity achievable
without any manoeuvre during the gravity assist.

It can be noted that ()
,
i

i rel′v is always in the plane

defined by ()1
,

i
f rel

−v and ()
,
i

i relv . The angle δ between
()1

,
i
f rel

−v and ()
,
i

i relv is computed, and if it is greater than

the maximum bending angle allowed by the gravity
assist [13]

max 2(1)
,min ,

1
2arcsin

1
i

p f relr −
=

+
v

δ

µ

then ()
,
i

i rel′v is defined such that its angle with ()1
,

i
f rel

−v is

maxδ . If the line carrying ()1
,

i
f rel

−v separates the plane

defined by ()1
,

i
f rel

−v and ()
,
i

i relv in two, ()
,
i

i rel′v points

towards the same half-plane as ()
,
i

i relv . ()
,
i

i rel′v is then

fully defined by assigning it the same magnitude as
()1

,
i
f rel

−v . Fig. 1 illustrates this transformation.

Fig. 1: Illustration of the transformation applied
to the initial relative velocity of leg I if it cannot
be obtained by a gravity-assist with incoming
relative velocity ()1

,
i
f rel

−v .

If max≤δ δ then only the magnitude of ()
,
i

i relv is

adjusted to ()1
,

i
f rel

−v , if necessary.

3.4 Detailed description of the method

The inputs to the problem are the sequence of N
planets to be encountered, the launch window I0 and
the range of times of flight ()

1i i N
I

≤ ≤
 allowed for each

leg of the transfer. The total search space is therefore

0 1 NI I I I= × × ×⋯ . One also provides N+1 integers

greater than 1, representing the number of points on
the grid to discretize each I i. The discretized I i are
denoted d

iI . One can then construct recursively N

new sets ()*

1

d
i i N

I
≤ ≤

 initializing from 0
dI . Then *d

iI

is the set of possible encounter dates of planet i such
that the spacecraft left planet i-1 at a time in *

1
d

iI −

and the time of flight of leg i is in d
iI . From there on

the pruning then works on the sets of encounter dates

()*

1

d
i i N

I
≤ ≤

. A maximum magnitude of launch and

arrival relative velocities can be specified, as well as
maximum values of ∆v for each leg, according to
which the pruning will be performed. Moreover
minimum pericenter radii have to be specified for
each gravity-assist.
The pruning algorithm starts by generating all
possible first legs. Three Lambert arcs are computed
for each element of *

0 1
d dI I× , one with no revolution,

and two with one revolution (the long arc and the
short arc). Out of the three Lambert arcs, only the
one whose initial relative velocity is lowest is
retained. If one of the Lambert arcs has a zero initial
relative velocity, which can happen if the first
gravity assist planet is identical to the launch planet,

()1
,

i
f rel

−v

()
,
i

i relv

()
,
i

i rel′v

δ

δmax

 8

then that Lambert arc is directly discarded. The
retained Lambert arc is then analyzed and the
element in *

0 1
d dI I× to which it corresponds can be

invalidated if the launch velocity is above the
specified threshold. At the end of this step, a set of
valid points in *

0 1
d dI I× is obtained. If there are dates

in 0
dI or in *d

iI for which all Lambert arcs were

pruned out, i.e. there are lines or columns in *
0 1
d dI I×

full with invalid transfers, then those dates are
pruned out and one obtains the new valid sets

() ()1
0

dV I and () ()1 *
1
dV I .

From the second leg onward, five Lambert arcs are
generated for each element of * *

1 2
d dI I× : one for zero

revolutions and the short and long arc for both the
one revolution case and the two revolutions case.
Like for the previous step, only the Lambert with the
smallest non-zero relative velocity at start is retained.
For that Lambert arc, the initial relative velocity

()2
,i relv is compared to all the incoming relative

velocity vectors ()1
,f relv of the first leg. For each case,

()2
,i rel′v is constructed, if necessary, with the procedure

described in subsection 3.3 and then a shaped
trajectory is generated to replace the Lambert arc,

such that the initial relative velocity is ()2
,i rel′v instead

of the Lambert arc’s ()2
,i relv . All other boundary

conditions are kept the same as the Lambert arc’s.
Thanks to the nature of the shaping, the shaping

covers the Keplerian motion so the closer ()2
,i rel′v is to

()2
,i relv , the closer the shaped trajectory will be to the

Lambert arc.
Potentially one computes then a shaped trajectory for

every node of () () () ()1 1 * *
0 1 2

d d dV I V I I× × . For each

shaped trajectory one verifies if the total ∆v is
smaller than what the user specifies and if not that

element of () () () ()1 1 * *
0 1 2

d d dV I V I I× × is marked

invalid. One can perform then the same forward and
backward pruning as for the first leg. If there are

dates of encounter in () ()1 *
1
dV I and () ()1 *

2
dV I such

that all legs arriving on those dates are invalid, then
those dates are pruned out for the rest of the
computations. In an analogous way, if all possible
departing legs are invalid for a given date, then that
date is pruned out. One obtains new sets of valid

dates () ()2
0

dV I , () ()2 *
1
dV I and () ()1 *

2
dV I .

The trajectories of the following legs are generated
and assessed in the same way as those of the second

one, and each time the set of valid dates is updated
with forward and backward pruning.
The last leg is special if the aim is to rendezvous the
final planet. Indeed, in that case, the Lambert arc is
not a good way to generate the first trajectory leg,
because the arrival velocity can be far from the
planet’s velocity. In that case, a shaped trajectory is
generated instead of the Lambert arc, where the
initial velocity is not constrained, and the final
velocity is that of the planet. The coefficients a4, a6
and b3 are set to zero in the expressions of R and Φ in
(9).
At this point, one has to analyze the distribution of
the dates defining the acceptable pairs of consecutive
legs. An acceptable pair of legs (), 1j j + will be

defined by a triplet of dates ()1 1, ,j j jt t t− + that is an

element of () () () () () ()1 1* * *
1 1

j j ji i id d d
j j jV I V I V I− +

− +× × .

These acceptable triplets of dates form a subset
() () () () () ()1 1* * *

, 1 1 1
j j ji i id d d

j j j j jV V I V I V I− +

+ − +⊂ × × . One

can then proceed to reconstruct the continuous search
spaces from the pruned discretized ones. For this, the
connected components , 1

k
j jV + inside every , 1j jV + are

identified and boxes , 1
k
j jBV + are created around each

one of them. Finally, hyperboxes lBV inside I are
identified such that an element inside it has each of
its components belonging to one of the , 1

k
j jBV + .

The hyperboxes are disconnected subsets of I, and
one can then apply a global optimisation algorithm
on each one of them. In this study, a differential
evolution algorithm was applied. When applying it,
the LQ controller was called after the shaping in
order to improve the transfers.

3.5 Computational effort

During the pruning, the part that takes by far the
most time is the generation of the shaped trajectory.
The trajectory shaping is called from the second leg
onward. If one discretizes the initial and arrival dates
of the leg into k points, as well as the previous leg’s
initial dates, then the shapes are called potentially k3
times. This is the case for all the legs except the first
and the last, which adds up to () 31N k− . In the final

leg there are two calls to the trajectory shaping for
each node, adding up to 38k calls. So in total, the

shaping is called at most () 37N k+ times.

4 TEST CASES

 9

This section presents the test cases to which the
shaping and the new incremental pruning was
applied to. Rendezvous missions are presented from
Earth to asteroid Apollo and Jupiter. The
computations were performed on Intel Core 2 Duo
running at 3 GHz. The codes were written in Matlab
and were run in a Linux environment. The
trajectories with the lowest ∆v were optimized with
DITAN with the objective of minimising the
propellant mass with the constraint of a peak thrust
equal to the peak thrust of the initial guess.

4.1 Earth-Earth-Apollo rendezvous

This mission scenario has four leg. Apollo’s orbital
elements are reported in Table 1.

Table 1 Orbital elements of Asteroid Apollo

Semi-major axis 1.471 AU
Eccentricity 0.56
Inclination 6.4°
Ascending node 25.9
Argument of periapsis 285.7

The launch window I0 was set to be the interval
between 1st January 2010 and 1st January 2015. I0
was discretized into 240 equidistant dates, i.e. in
average three launch dates per month. The first leg’s
range of times of flight was set to [200 d ; 800 d] and
discretized into 250 points, the second one spanned
[200 d ; 1000 d] and split into 300 values. The initial
relative velocity was allowed to be 5 km/s maximum
and a limit was set on the second leg’s total ∆v to 10
km/s. The minimal altitude allowed for the gravity-
assist at Earth was 200 km. The pruned pairs of legs
are plotted in Fig. 2.

Fig. 2: plotted are the triplets of dates,
corresponding to the pair of Earth-Earth-Apollo
legs, that were not pruned

In total, 29 separate hyperboxes were obtained by the
pruning after 8.5 hours of computation, and a
differential evolution algorithm was run on both of
them, in order to locate the global minimum, taking
8.9 minutes each.

The trajectory with the lowest ∆v obtained from the
DE turned out to be of 5.32 km/s with an initial
launch velocity of 4.93 km/s. One should note that
part of the ∆v of the low thrust transfer includes
gravity-loss. The total time of flight is 3.17 years.
The local optimization with DITAN resulted in a
transfer also lasting 3.17 years and requiring 4.49
km/s of ∆v and an initial launch velocity of 5.00
km/s.
 Table 2 provides the dates of encounter of each
planet for the best trajectory.
Fig. 3 and Fig. 4 show that the optimized transfer is
close to the initial guess one.

 Table 2: Dates at each planet for the LTMGA
trajectory with the lowest ∆v.

4000 4200 4400 4600 4800 5000 5200
0

0.02

0.04

0.06

0.08

0.1

0.12

Time from launch [d]

T
hr

us
t m

ag
ni

tu
de

 [N
]

Thrust profile for a launch on 4057.1714 MJD2000

Lowest ∆v from DE
Optimal final mass

Fig. 3 Thrust profile of the result from DE with
the lowest ∆v and its optimized solution from
DITAN

 DE DITAN

Launch from Earth 9/2/2011 19/3/2011

Earth GA 27/7/2012 4/9/2012

Rdv at Apollo 12/4/2014 20/5/2014

 10

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

x [AU]

y
[A

U
]

Lowest ∆v from DE
Optimal final mass

Fig. 4 Trajectory plo of the result from DE with
the lowest ∆v and its optimized solution from
DITAN

4.2 Earth-Venus-Earth-Earth-Jupiter rendezvous

This LTMGA transfer has four legs. The launch
window I0 was set to be the interval between 1st
January 2010 and 1st January 2020. I0 was discretized
into 240 equidistant dates, i.e. in average two launch
dates per month. The first leg’s range of times of
flight was set to [50 d ; 500 d], the second one’s to
[50 d ; 700 d], the third one to [100 d ; 1000 d] and
the fourth to [500 d ; 2000 d]. The ranges of time of
flight were discretized into respectively 45, 65, 90
and 75 points. The initial relative velocity was
allowed to be 5 km/s at most and limits were set on
the last three leg’s total ∆v to 10 km/s, 10 km/s and
15 km/s respectively. The minimal altitude allowed
for all gravity-assists was 200 km. The pruned pairs
of legs are plotted in Fig. 5 to Fig. 7.

Fig. 5: plotted are the triplets of dates,
corresponding to the pair of Earth-Venus-Earth
legs, that were not pruned

Table 3: Dates at Each planet for the LTMGA
trajectory with the lowest ∆v.

Fig. 6: plotted are the triplets of dates,
corresponding to the pair of Venus-Earth-Earth
legs, that were not pruned not pruned for the pair
of first and second legs.

Fig. 7: plotted are the triplets of dates,
corresponding to the pair of Earth-Earth-Jupiter
legs, that were not pruned

In total, 5 separate hyperboxes were obtained by the
pruning after 26 minutes of computation, and a
differential evolution (DE) algorithm was run on all

 DE DITAN

Launch from Earth 15/1/2017 3/2/2017

Venus GA 20/4/2017 20/4/2017

Earth GA 1 28/8/2018 1/9/2018

Earth GA 2 25/3/2021 25/3/2021

Rendezvous at Jupiter 8/9/2024 27/12/2024

 11

hyperboxes, in order to locate the global minimum.
In average, each minimisation ran for 30 minutes in
average.

The lowest ∆v obtained from the DE was 7.66 km/s
with an initial launch velocity of 3.58 km/s. The ∆v
includes the gravity loss due to the low and long
nature of the thrust arcs. This result is to be
compared with the Hohmann transfer’s total ∆v of
14.44 km/s. The total time of flight amounted to 7.65
years. The optimization with DITAN resulted in a
transfer of 7.89 years of duration with a ∆v of 6.64
km/s and with an initial launch velocity of 5 km/s.

Fig. 8 and Fig. 9
Table 3Table 3 provides the dates of encounter of
each planet for the best trajectory.

6000 6500 7000 7500 8000 8500 9000 9500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time from launch [d]

T
hr

us
t m

ag
ni

tu
de

 [N
]

Lowest ∆v from DE

Optimal final mass

Fig. 8 Thrust profile of the result from DE with
the lowest ∆v and its optimized solution from
DITAN

−6 −4 −2 0 2 4 6

−5

−4

−3

−2

−1

0

1

2

3

4

5

x [AU]

y
[A

U
]

Lowest ∆v after DE

Optimal final mass

Fig. 9 Trajectory plo of the result from DE with
the lowest ∆v and its optimized solution from
DITAN

CONCLUSION

A method to construct and globally optimize low
thrust multiple gravity assist trajectories was
presented in this paper. The advantage is that no
powered swingby is necessary. A new incremental
pruning scheme is also proposed in order to reduce
the search space of the global optimization. The
numerical results are promising and will be further
studied and analyzed for further improvement of the
algorithms.

ACKNOWLEDGMENTS

The work presented in this paper was partially
supported by Qinetiq through an ICASE EPSRC
grant.

REFERENCES

[1] Rayman, M.D., Varghese, P., Lehman, D.H. and

Livesay, L.L.: Results from the Deep Space 1
Technology Validation mission, Acta Astronautica,
Issues 2-9, July-November 2000, pp. 475-487

[2] Haros, D. and Schoenmakers, J.:Post-Launch

Optimisation of the Smart 1 Low-Thrust Trajectory to
the Moon, 18th International Symposium on
Spaceflight Dynamics, Munich, Germany, 15th-22nd
Oct. 2004

[3] Rinderle, E. A.: Galileo User’s Guide, Mission Design

System, Satellite Tour Analysis and Design
Subsystem, Jet Propulsion Laboratory, California
Institute of Technology, Pasadena, CA, JPL D-263,
1986

[4] Williams, S.N. and Longuski, J.M.: Automated design

of multiple encounter gravity-assist trajectories,
Master's Thesis, School of Aeronautics and
Astronautics, Purdue University, West Lafayette,
Indiana, 1990

[5] Petropoulos, A.E. and Longuski, J.M. and Bonfiglio,

E.P.: Trajectories to Jupiter via gravity assists from
Venus, Earth, and Mars, Journal of Spacecraft and
Rockets, Vol. 17, No. 6, November-December 2000,
pp. 776-783

[6] Petropoulos, A. E. and Longuski, J. M.: Automated

design of low-thrust gravity-assist trajectories,
AIAA/AAS Astrodynamics Specialist Conference,
AIAA Paper, Vol. 4033, pp.157-166, 2000

 12

[7] Izzo, D., Becerra, V. M., Myatt, D. R., Nasuto, S. J.
and Bishop, J. M.: Search space pruning and global
optimisation of multiple gravity assist spacecraft
trajectories, Journal of Global Optimization, Springer,
Vol. 38, No. 2, 2007, pp. 283-296

[8] De Pascale, P. and Vasile, M. : Preliminary Design of

Low-Thrust Multiple Gravity-Assist Trajectories,
Journal of Spacecraft and Rockets, Vol. 43, No. 5,
2006, pp. 1065

[9] Yam, C. H., Di Lorenzo, D. and Izzo, D.: Constrained

Global Optimization of Low-Thrust Interplanetary
Trajectories, ESA internal

[10] Carnelli, I., Dachwald, B. and Vasile, M.:

Evolutionary Neurocontrol: A Novel Method for
Low-Thrust Gravity-Assist Trajectory Optimization,
Journal of guidance, control, and dynamics, Vol. 32,
No. 2, March-April 2009

[11] Petropoulos, A.E. and Longuski, J.M.: Shape-Based

Algolrithm for the Automated Design of Low-Thrust,
Gravity-Assist Trajectories, Journal of Spacecraft and
Rockets, Vol. 41, No. 5, September-October 2004, pp.
787-796

[12] Vasile, M., Bernelli-Zazzera F.: Optimizing Low-

Thrust and Gravity Assist Maneuvres to Design
Interplanetary Trajectories, The Journal of the
Astronautical Sciences. Vol. 51, No. 1, January-March
2003

[13] Novak, D. M., Vasile, M.: An Improved Approach to

Preliminary Mission Design Using Fast Linear
Quadratic Intermediate Optimisations, Proceedings of
the 60th International Astronautical Congress, IAC09-
C1.10.5, Daejeon, Korea, 2009

[14] Becerra, V. M., Myatt, D. R., Nasuto, S. J., Bishop, J.

M. and Izzo, D.: An efficient pruning technique for
the global optimisation of multiple gravity assist
trajectories, Acta Futura, Vol. 2005, p. 35, 2003

[15] Vasile, M., Schuetze, O., Junge, O., Radice, G.,

Dellnitz, M., and Izzo, D.: Spiral trajectories in global
optimisation of interplanetary and orbital transfers,
Technical report, Ariadna Study Report AO4919
05/4106, Contract Number 19699/NL/HE, European
Space Agency, 2006

[16] Novak, D. M., Vasile, M.: An Improved Shaping

Approach to the Preliminary Design of Low-thrust
Trajectories, submitted to the Journal of Guidance,
Control and Dynamics in May 2010.

[17] Battin, R. H., An introduction to the mathematics and

methods of astrodynamics, AIAA Education Series,
1999, pp. 490-493

[18] Efroimsky, M.: Gauge Freedom in Astrodynamics,

Modern Astrodynamics, edited by P. Gurfil,

Butterworth-Heinemann, 2006, pp. 23-52.

[19] Vasile, M., De Pascale, P. and Casotto, S. : On the
optimality of a shape-based approach based on
pseudo-equinoctial elements, Acta Astronautica,
Volume 61, Issues 1-6, June-August 2007, pp. 286-
297

[20] Izzo, D.: Advances in global optimisation for space

trajectory design, Proceedings of the Interbational
Symposium on Space Technology and Science, Vol.
25, p. 563, 2006

[21] Schuetze, O., Vasile, M., Junge, O., Dellnitz, M., and

Izzo, D.: Designing optimal low-thrust gravity-assist
trajectories using space pruning and a multi-objective
approach, Engineering Optimization, Vol. 41, No. 2,
2009

