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ABSTRACT 

 
In the last decade the global optimisation of low-thrust multi-gravity assist transfers (LTMGA) has been tackled 
with different approaches. Some authors proposed to generate a first guess solution by building a multi-gravity assist 
transfer with impulsive manoeuvres and then using a direct or an indirect method to transcribe the multi-impulse 
arcs into low-thrust arcs. Other authors, notably Petropoulos et al. (2002), De Pascale et al. (2006), Wall et al. 
(2008) and Schütze et al. (2009), proposed the use of several forms of trajectory shaping to model low-thrust arcs. 
The disadvantage in all these studies is that the swingbys are powered and therefore suggest the use of high thrust 
propulsion along with the low thrust propulsion on board the spacecraft. The problem generally resides in the lack of 
flexibility of the low thrust trajectory models to satisfy a variety of boundary conditions. In this paper, a spherical 
shaping model is used whereby all encountered types of boundary constraints are satisfied analytically. Furthermore, 
a special incremental pruning of the search space is performed before employing a global optimiser. The process is 
conceptually equivalent to the approach proposed by Becerra et al. for the search space pruning of multi-gravity 
assist trajectories and exploits the decoupling of pairs of transfer arcs. Such decoupling removes the dependency of 
one arc from all those that are two or more before, and allows for pruning the search space in polynomial time. 
Numerical examples are presented for LTMGA transfers from Earth to asteroid Apollo and Earth to Jupiter. 
 
 
 

INTRODUCTION 

 
The development of electric propulsion for space 
missions has already given rise to successful 
missions, like Deep Space 1 [1] and SMART-1 [2]. 
The increased specific impulse can result in savings 
in propellant mass for a broad class of mission types.  
As of today, NASA’s Dawn spacecraft is currently 
heading towards asteroid Vesta and is equipped with 
an ion thruster. The European Space Agency’ is 
preparing to send a cornerstone mission called 
BepiColombo to Mercury. Solar electric propulsion 
will be used for that mission. The design of 
trajectories for these types of missions is more 
complex than for those employing chemical 
propulsion due to the need to optimize thrust profiles 
instead of impulses. This makes low thrust mission 
analysis mathematically and computationally a 
challenging task. 

What makes the trajectory optimization problem 
even more complex for missions like Dawn and 
BepiColombo is the use of gravity assists. Each 
gravity assist adds dimensions to the global problem. 
Since these problems multitudes of local minima, 
global optimization is unavoidable to obtain the most 
interesting trajectories. 
Before the eighties, multiple gravity assist (MGA) 
trajectories were computed with ad hoc methods. It 
was during the design of the Galileo mission in the 
eighties that the first codes to compute large sets of 
trajectories, using impulsive manoeuvres. These 
codes gave rise later to STOUR [3]. Williams and 
Longuski [4] automated the MGA search. STOUR 
was then used extensively by Petropoulos et al. [5] 
for assessing a large number of mission scenarios to 
Jupiter. They also applied STOUR with a model for 
low thrust transfers called exponential sinusoids [6]. 
With the development of the field of global 
optimisation, different approaches were tested in 
order to seduce the computational time to find 
interesting regions in the search space, for both high 
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thrust and low thrust transfers. These approaches 
included differential evolution [7], particle swarm 
optimization [7], evolutionary branching [8] and 
simulated annealing [9]. Evolutionary neurocontrol 
was also applied successfully by Carnelli et al. [10] 
to the low thrust MGA (LTMGA) problems. 
However the disadvantage in the current techniques 
of solving LTMGA problems is that gravity assists 
involve impulsive manoeuvres, such that both a low 
thrust and a high thrust propulsion system is assumed 
on board. There is therefore no method today to 
compute LTMGA trajectories without employing 
high thrust manoeuvres, unless local constrained 
optimizations are performed inside the global 
optimization [9]. The problem resides in the lack of 
flexibility of the low-thrust trajectory models. The 
exponential sinusoids [11] have the disadvantage of 
being a planar model and one cannot impose 
boundary constraints on velocity and time of flight 
together. Pseudo-equinoctial elements, proposed by 
Vasile et al. [12] can provide first guess trajectories 
satisfying boundary constraints, time of flight 
constraint and thrust constraints. However, the 
satisfaction of the boundary constraints relies on the 
convergence of a Newton loop, due to the fact that 
pseudo-equinoctial elements are not osculating. 
Novak and Vasile [13] formulated a flexible shaping 
method based on spherical coordinates for which 
combination of boundary constraints on position and 
velocity can be solved analytically. This paper 
applies the latter shaping to the LTMGA problem in 
order to compute transfers employing only low thrust 
manoeuvres. Avoiding powered swingbys has a 
further the advantage of reducing the dimension of 
the search space. 
Moreover, to further reduce the size of the search 
space, an incremental pruning technique is employed 
in this study. Incremental pruning has been proposed 
by Becerra et al. [14] on MGA missions and is based 
on the construction of sets of MGA trajectories, one 
leg at a time, and removing subsets that do not 
satisfy a given criterion, e.g. ∆v of the leg too high. 
The approach exploits the decoupling of the transfer 
arcs offered by the powered swing-by model. Such 
decoupling removes the dependency of one arc from 
the preceding ones, and allows for pruning the search 
space in polynomial time. The final pruned space can 
then be explored with a global optimizer. Vasile, 
Schütze et al. used the exponential sinusoid model 
[15] to apply incremental pruning to LTMGA 
problems with powered swingbys. 
The present study’s aim is to avoid powered 
swingbys. In that case each leg cannot be completely 
decoupled from the others. The issue is solved by 
adapting the incremental pruning whereby the 
decoupled entities are pairs of legs. The pruning 

remains therefore of polynomial complexity with 
respect to the number of legs. 
Numerical examples are provided for LTMGA 
transfers from Earth to Jupiter and Earth to Mercury. 
 

1 TRAJECTORY SHAPING 
 
This section explains the shaping method used to 
generate the trajectories for each leg of multiple 
gravity-assist trajectories. More detailed derivations 
and discussions can be found in [13] A trajectory 
model based on shaping the spherical coordinates is 
described. The last subsection describes the method 
used to satisfy time of flight constraints. 

1.1 Shaping the Spherical Coordinates 

 
In the proposed model, the spacecraft’s position is 
expressed in the spherical coordinates 

( ) ( )*, , / 22r θ ϕ ππ π+∈ × × − +ℝ ℝℝ
ℤ ℤ

, where r is 

the distance from the central body, θ is the azimuthal 
angle and is φ the elevation angle. If the trajectory 
was parametrized by the time, the state vector would 

be ( ), , , , ,
T

r rθ ϕ θ ϕɺ ɺɺ . Here we assume that the 

trajectory can be parametrized by θ, i.e. 

( )r R θ= , ( )ϕ θ= Φ and ( )t T θ= , so that the 

azimuthal angle swaps role with the time t. This can 
be done if there is a smooth mapping between t and 
θ, which implies that θ is strictly monotonous with 
respect to time. The state vector becomes thus 

( ), , , , ,
T

x r t r tϕ ϕ′ ′ ′=  where the prime represents a 

derivative with respect to θ. Due to this 
parametrization, the poles need to be excluded from 
the set of admissible positions and we have to allow 
θ to account for the nr revolutions of the trajectory. 
The configuration space W is defined hence as 

( )* ; 2 2; 2i f rW n+  = × + × − ℝ θ θ π π π . 

The equations of motion in an inertial reference 
frame satisfied by the spacecraft are given by 
 

2

2 3

d

dt r
= − +µr r

u  (1) 

 
where the position vector is 

( )cos cos , sin cos , sin
T

r r rθ ϕ θ ϕ ϕ=r . If the 

position vector is parametrized by θ the equations of 
motion become: 
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2
2

2 3

d d

dd r
θ θ µ

θθ
+ = − +ɺ ɺɺr r r

u  (2) 

 

Note that 1/ tθ ′=ɺ  and 3/t tθ ′′ ′= −ɺɺ . The control 
vector is obtained straight from equation (2), after 
having inserted the expression of r as a function of 
the spherical coordinates. 
At this point, one can provide R, Φ and T, i.e. one 
can “shape” r, φ and t, and the corresponding control 
profile can be obtained, along with the ∆v and the 
propellant consumption if the spacecraft’s initial 
mass and specific impulse are provided. R and Φ 
model the pure geometry of the trajectory, while T 
shapes the dynamics along the trajectory. It is 
assumed that shaping functions R, Φ and T belong to 
a set of admissible functions SR, SΦ and ST that are 
continuously differentiable twice. 

We define ( )/ rd d v v vθ ϕθ= =ɶ ɶ ɶ ɶv r , = ∧ɶ ɶh r v  

and ( )/ rd d a a aθ ϕθ= =ɶ ɶ ɶ ɶ ɶa v  and the flight path 

angle is denoted here by γ. 
It can be shown that t satisfies  
 

2 2 cos
nuD µ

= +
γT R′

 (3) 

 
where D is given by 
 

( )
( )

( )
( )2 2 2 2 2

D
R v v R v v

⋅ ∧ ⋅ ∧
= =

+ +

ɶɶ ɶ

ɺɶ ɶθ ϕ θ ϕθ

a h v a h v
 (4) 

 
So if we define the function T0 by 
 

2
2

0

DR
T ′ =

µ
 (5) 

 
And assume that the time evolution T is shaped by 
T0, then the control vector corresponding to the 
geometrical trajectory defined by R and Φ will have 
no component out of the tangential plane to the 
trajectory ( 0nu = ). There is a restriction on the 

shape of the trajectory for which this control strategy 
is allowed, it is expressed by 0D > . Physically 
speaking, the plane generated by tangential and out-
of-plane vectors (or all the allowed control vectors) 
divides the space in two, and the centre of curvature 
of the trajectory at every point must be on the same 
side of the plane as the central body. This makes 
sense, because if the acceleration points outwards 
from the central body with respect to the plane of 
allowed controls, then a control component outside 
of the latter plane is required to compensate the 

gravitational pull of the central body and therefore 
0nu ≠ . In the particular case of a two dimensional 

trajectory, we obtain 
 

2

3cos

cR
D =

γ
 (6) 

 
where c is the algebraic curvature of the trajectory. 
Thus 0D >  if the curvature is positive. The time of 
flight and the ∆v corresponding to the trajectory are 

obtained by integration over ; 2i f rnθ θ π +   of 

T ′ and T ′u  respectively. 

The disadvantage of fixing 0T T=  is that R and Φ 

define completely T ′  and the time of 

flight ( ) ( )f iT Tθ θ− . This can be problematic when 

a constraint on the time of flight exists. The 
advantage is that it is difficult to shape a priori T in a 
way to obtain a control that is not too far from 
optimal, i.e. interesting in practice, therefore using 
such an expression for T ′  will result, for certain 
transfers (see section 3), in reasonable thrust profiles 
and ∆v. By imposing 0nu = , the in-plane motion is 

controlled only by the tangential component of the 
control, which is the most efficient way to vary the 
energy of the osculating orbit. Such shaping for T 
was chosen in this study; only SR and SΦ need to be 
defined in this way. 
R and Φ can be in any function space such that 

0R >  and 2 2π π− < Φ < , but it is judicious to 

choose expressions for which the boundary 
constraints on the position and velocity can be solved 
analytically. The boundary conditions are written in 
equations (7). 
 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

2n

2n

coscos
2n

2n

2n

i i f r f

i i f r f

f fi i
i f r

θi θf

i ri f r rf

i f
i f r

i f

R θ = R R θ + π = R

Φ θ = Φ Φ θ + π = Φ

R ΦR Φ
T θ = T θ + π =

v v

R θ = v R θ + π = v

v v
Φ θ = Φ θ + π =

R R
ϕ ϕ







′ ′



′ ′

 ′ ′


(7) 

 
Note that the boundary conditions on T ′  turn into 
boundary conditions on R′′  and ′′Φ , as shown in (8). 
 

( ) ( )
( ) ( )

i i i i

f f f f

R t t C

R t t C

α
α

′′ ′′ + Φ =
 ′′ ′′+ Φ =

 (8) 
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There are hence 10 boundary conditions, so unless 
there are more than 10 parameters that can be set in 
R and Φ combined, the time of flight is uniquely 
defined. 
In the examples in this paper, SR and SΦ are the set of 
functions that take the form: 
 

( ) ( )
( ) ( )

2
0 1 2 3 4 5 6

0 1 2 3

1

cos sin

cos sin

R
a a a a a a a

b b b b

 = + + + + + +
Φ = + + +

θ θ θ θ θ θ

θ θ θ θ

 (9) 

  
Expressing the radius and the elevation angle in these 
forms has the advantage of covering the Keplerian 
unperturbed arc, provided that the trajectory is by the 
spherical coordinates derived from the rotated 
inertial frame whose (x-y) plane is defined by the 
initial position and velocity vectors. 
11 coefficients are to be determined by the boundary 
conditions and a constraint on the time of flight. 
Subsection 1.2 explains the method used to solve 
time of flight constraints. 
It must be mentioned that due to the ability to solve 
analytically the boundary conditions, one can apply 
any subset of constraints from the set in (7), after 
adjusting the number of undetermined coefficients in 
(9). For example, one can impose the boundary 
conditions on the position at both tips and on the 
velocity at arrival only. In that case, the number of 
constraints is three less, and two coefficients are set 
to zero in the expression of R and on in the 
expression of Φ. As will be explained, this is what 
happens in the last leg of the pruning phase. 

1.2 Satisfaction of the time of flight constraint 

 
In this subsection it is explained how the time of 
flight constraint is satisfied exactly. 
The expressions for the shaping functions in (9) 
involve a number of coefficients that can be used for 
satisfying several constraints. The boundary 
constraints account for ten of them. The time of 
flight constraint sets the value of an additional 
coefficient or parameter. Since the time of flight 
depends non-linearly with respect to the additional 
unknown, a Newton loop is applied to solve the 
constraint. 
The coefficient a2 in (9) is initially set to zero and 
within each iteration of the Newton loop the other 10 
coefficients are computed analytically from (7) and 
(8). 
Using a Newton loop for satisfying time of flight 
constraints in the described manner preserves the 
assumptions made on the trajectory by assigning 
expressions to T’ such as in (5). However due to the 

non-linear nature of the time of flight constraint, the 
Newton loop can fail to reduce the time of flight 
violation Tviol to zero. 
If that scenario happens another method is applied 
after the Newton loop. The time evolution T is 
modified in such a way that the time of flight is 
satisfied exactly. At the exit of the Newton loop, one 
reshapes T by assigning it the new expression 

0 violT T T χ= −  where 

 

( ) ( ) ( )( )6
i

i f

f i

u u du= − − −
− ∫

θ

θ
χ θ θ θ

θ θ
 (10) 

 

It can be verified that ( ) ( ) 0i f′ ′= =χ θ χ θ  and 

therefore T′  takes the same values at the boundaries 

as 0T ′ , so the boundary constraints are not affected. 

Moreover, because ( ) ( ) 1f i− =χ θ χ θ , the time of 

flight ( ) ( )f iT T−θ θ  will be the exact desired time 

of flight. 
Reshaping T in such a way can alter the control 
profile considerably and can potentially result in 
higher ∆vs, if the value of violT  becomes high. 

Furthermore, for higher values of violT , T′  can 

become zero along the trajectory. If that happens, the 
control profile will exhibit a singularity, since 

1/ t′=ɺθ  and 3/t t′′ ′= −ɺɺθ . 
 

2 LINEAR QUADRATIC CONTROLLER 

 
In this section the method used to improve in a fast 
way low-thrust transfers is explained. In practice, 
this approach is applied to the transfers generated by 
the shaping methods. The objective is to cope with 
the arbitrariness of the choice to model the state 
vector x. The rationale behind this approach is that 
there may be an easily computable trajectory in the 
vicinity of the shaped trajectories that is better in 
terms of the given objective function. It is not 
intended at this stage to come up with an optimal 
trajectory, but to obtain improved trajectories that 
cannot be modelled by the shaping functions that 
were used at the previous step of the trajectory 
design. A more detailed derivation exists in [16]. 
 
Let’s assume that a spacecraft, whose position is r 
and velocity is v, is subject to the gravitational pull 
of a central body.  Additionally the spacecraft has an 
onboard controllable propulsion system that 
contributes with an acceleration u to the motion of 



 5 

the spacecraft. If we define the state vector x as 

( )TT Tr v then the equations of motion can be 

written in the following as ( )= +x A x Buɺ . 

The equations of motion are then linearized in x and 
u around the reference trajectory, at all points of the 
time interval I, as in (11), which can be rewritten as 
in (12). The control vector of the linearized equations 
of motion are denoted lu . 

  

( ) ( )
( ) ( ) ( )( )* * *

0 0 0 0 0 0
T

i

l

t

t t t

 =


= + = +
A B A B u uɺ -

ξξξξ

ξ ξ υ ξξ ξ υ ξξ ξ υ ξξ ξ υ ξ
 (11) 

( ) ( )
( )

1

1 1 1 1

0 0 0 0 0 01
T

i

l

t

t

 =


= + A B uɺ

ξξξξ

ξ ξξ ξξ ξξ ξ
 (12) 

 
The optimal control, corresponding to an 
unconstrained optimization problem, where the 
dynamics are defined by (12) and where the 
objective function is of quadratic form as in (13), can 
be put in a feedback form expressed in equation  (14)
. 
 

( ) ( ) 2
1 1
T

f f lI
J t t dt= + ∫Q uξ ξξ ξξ ξξ ξ  (13) 

1 1
T

l =u B Eξξξξ  (14) 

 
E is computed by integrating backwards the Riccati 
differential equation in (15). 
 

( )
1 1 1 1 ,

f

T T

t

t I

 = −


= − − − ∀ ∈

E Q

E A E EA EB B Eɺ
 (15) 

 
The first term in the objective function will make ξ1 
tend towards 0, which is what is required: the 
perturbations on the trajectory should not affect the 
boundaries. The fact that the last component of ξ1 is 
always 1 is not problematic because the choice of Q 
is made such that it does not influence the 
convergence of the other components of ξ1 towards 
0. The expression in (16) is chosen for Q. 
 

3

3

0 0

0 0 , 0, 0

0 0 0

r

v r v

q

q q q

 
 = > > 
 
 

I

Q I  (16) 

 
qr is a weight on the final position vector to satisfy 
the final boundary constraint, and qv has the same 
role but for the velocity. The values for the two 
weights were set to 1 in order to satisfy all the time 

the boundary conditions at arrival up to relative 
violations of 10-6. 
Therefore, the optimization requires the integration 
of a 7 by 7 matrix differential equation backwards in 
time, followed by the forward integration of the 
linearised equations of motion using the previously 
computed expression of E. The first integration can 
be made faster by noting that E is a symmetrical 
matrix, hence it is sufficient to compute 28 variables 
instead of 49. In order to do that, Matlab’s ‘ode45’ 
4th-5th order Runge Kutta integrator was used with 
relative and absolute tolerances of 10-9. 
Once the optimized linearised trajectory (x*+ ξ) is 
obtained, the corresponding control law needs to be 
updated since it verifies the linearised equations of 
motion and not the real ones. The real control law 
corresponding to the physical trajectory is calculated 
from: 
 

3real l l
lr

= +u r rɺɺ
µ

 (17) 

 
where lr  is the position component of x0+ξ. Note 

that the approach of keeping the linearised control 
law and calculating the corresponding state vectors 
by propagation would not only be more 
computationally intensive but would not guarantee 
that the trajectory would end at the target state 
vector. 
The error on the control law due to the linearisation 
is approximated in [16] to be 
 

( )
( )
( )

0

0

0

31

32

33

T
x

T
y

T
z

u O

u O

u O

∆ = +

∆ = +

∆ = +


r A r r

r A r r

r A r r

ξ H ξ ξ

ξ H ξ ξ

ξ H ξ ξ

r

r

r

 (18) 

where , ,
T

x y z l realu u u ∆ ∆ ∆ = −  u u  and rξ  as the 

first three components of ξ , i.e., the change of 

position resulting from the LQ controller. One also 
has that all of i

AH depends only on 0r  and that 

( )4

0
i O

−=AH r . 

A theorem has been proven on the behaviour of the 
LQ controller when applied to an optimal initial 
trajectory. It states that the LQ controller leaves the 
initial trajectory unchanged if and only if the initial 
trajectory is already optimal. So in a certain sense, 
the result of the LQ controller is a measure of the 
optimality of the initial trajectory. 
Finally, the total ∆v can be calculated by an 
integration of uopt over I. No assumptions are made 
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on the physical properties of the spacecraft and its 
propulsion system, in particular on the initial mass 
and the specific impulse, because it was chosen to 
model the trajectory in the simplest way. Introducing 
the spacecraft’s mass as a variable would raise the 
number of differential equations to compute 
backwards from 28 to 36 and forwards from 6 to 7. 
This would have repercussions on computational 
time without necessarily improving the results since 
optimizing the L2 norm of the thrust vector does not 
yield necessarily better results than optimizing the L2 
norm of the acceleration control vector. 
 

3 INCREMENTAL PRUNING 

3.1 Background 

Incremental pruning is a technique first proposed by 
Becerra et al. [14] for finding globally optimum 
multiple gravity-assist trajectories. The idea is that if 
one can construct the legs of the MGA transfers 
independently, then it is possible to prune out whole 
sets of transfers if one of the legs does not satisfy 
some required criteria. By constructing and assessing 
legs one after the other, the space of acceptable 
transfers is pruned out incrementally. Once the final 
pruned search space for the full problem is obtained, 
a global optimisation can be performed on it. It has 
been shown that applying such a pruning can 
increase the chance of finding the most promising 
trajectories. 
As introduced by Becerra et al. in their code called 
GASP (Gravity Assist Space Pruning), the pruning 
relies on a systematic search on the discretised search 
space. The problem is formulated in such a way that 
the different legs can be constructed independently, 
but can also be linked together to form complete 
MGA trajectories. In the first form of pruning 
introduced by Becerra et al. the legs were Lambert 
arcs linked together by powered swingbys. The 
search space consisted of a grid of departure dates, 
encounter dates for the gravity assist and arrival 
dates. All the possible Lambert arcs were constructed 
for the first leg and a pruning of the departure and 
first gravity-assist dates was performed, based on the 
magnitude of the initial relative velocity. If there are 
launch dates for which no Lambert arc is acceptable, 
then that launch date is pruned out for the problem. 
In a similar manner, if no Lambert arc is acceptable 
for a given date for the first gravity-assist, then that 
date is not considered as starting date for the second 
leg. In the next step, all possible second legs are 
constructed except for the dates of first gravity-assist 
that were pruned out in the previous step. Criteria to 
prune out the initial and final dates of the second leg 
are based on the maximum thrust constraints and 

angular constraints on the incoming and outgoing 
relative velocities at the first gravity assist. 
The following legs are constructed and pruned out 
similarly to the second leg. A constraint on the 
relative arrival velocity is imposed during the 
pruning of the final leg’s departure and arrival dates. 
After the computation of each leg and the pruning of 
departure and arrival dates of it, an additional 
forward and backward pruning is performed on the 
complete space, based on the consideration that if no 
Lambert arc arrives on a given date for a gravity 
assist, then that date is not considered as departure 
date for the next leg, and if no Lambert arc can 
depart on a given date, then all Lambert arcs of the 
previous leg and arriving on that date are pruned out. 
Once the grid space of the complete problem is 
pruned, one recovers the acceptable combinations of 
intervals for the initial and arrival dates of each leg. 
One obtains hence so-called boxes, and a global 
optimisation is performed on each. Becerra et al. 
applied differential evolution. 
The algorithms applied by GASP have been used 
with trajectory models that are more complex than 
Lamberts arcs. GASP has been tested successfully 
when deep space manoeuvres (DSM) is inserted in 
each leg [20]. DSMs increase the flexibility of each 
leg and represent more realistic missions, to the 
expense of an increased dimension of the search 
space. The objective in that case is to minimise the 
sum of the DSMs’ ∆v and the gravity assists’ ∆v. 
Schütze et al. applied GASP with exponential 
sinusoids [15][21] as trajectory models for the 
problem of optimizing low thrust MGA transfers. 
The inconvenience with the latter approach, 
however, is that one needs to employ powered 
swingbys, with impulsive ∆vs, and suggests therefore 
both a chemical and a low-thrust propulsion system 
on board the spacecraft. 

3.2 Overview of the method 

This lack of realism is addressed here, by eliminating 
the need of a manoeuvre at the swingby. The issue 
arising then is that successive legs cannot be 
computed independently, because the outgoing 
relative velocity at a gravity assist must be reachable 
from the incoming relative velocity obtained in the 
previous leg, while setting a limit on the pericenter 
radius. For example, the magnitudes of the two 
relative velocities must be equal. 
Therefore the GASP algorithm has been modified 
such that legs are independent in pairs instead of on 
their own. The low-thrust trajectory model is such 
that legs departing and arriving on given dates 
always arrive with the same velocity, but can depart 
with different velocities depending on the arrival 
velocity of the previous leg.  
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For the first leg, only Lambert arcs are considered. 
For each additional leg, the Lambert arcs are first 
computed, and the initial relative velocity is 
compared with the previous leg’s arrival relative 
velocity. If the two can be matched, then the Lambert 
arc is kept, otherwise the initial relative velocity is 
modified such that no impulse is required at the 
gravity assist. The leg is then recomputed with a low-
thrust trajectory model which can accommodate 
boundary constraints on velocity and time of flight. 
Hence the departure date ti-1 of the previous leg 
defines the incoming relative velocity at the swingby 
at date ti, so the outgoing relative velocity too, and 
the arrival date ti+1 defines the arrival velocity. 
 

3.3 Gravity assist model 

 

Most often the outgoing relative velocity ( )
,
i

i relv  at the 

beginning of a given leg i cannot be matched with 

the incoming one ( )1
,

i
f rel

−v , obtained from the previous 

leg, without going below the minimum pericenter 
radius specified by the user. Then a transformation is 
applied to the outgoing relative velocity. The new 

relative velocity ( )
,
i

i rel′v  is such that ( ) ( )
, ,
i i

i rel i rel′ −v v  is 

minimal, while keeping the new velocity achievable 
without any manoeuvre during the gravity assist.  

It can be noted that ( )
,
i

i rel′v  is always in the plane 

defined by ( )1
,

i
f rel

−v  and ( )
,
i

i relv . The angle δ  between 
( )1

,
i
f rel

−v  and ( )
,
i

i relv  is computed, and if it is greater than 

the maximum bending angle allowed by the gravity 
assist [13]  
 

max 2( 1)
,min ,

1
2arcsin

1
i

p f relr −
=

+
v

δ

µ

 

then ( )
,
i

i rel′v  is defined such that its angle with ( )1
,

i
f rel

−v  is 

maxδ . If the line carrying ( )1
,

i
f rel

−v  separates the plane 

defined by ( )1
,

i
f rel

−v  and ( )
,
i

i relv  in two, ( )
,
i

i rel′v  points 

towards the same half-plane as ( )
,
i

i relv . ( )
,
i

i rel′v  is then 

fully defined by assigning it the same magnitude as 
( )1

,
i
f rel

−v . Fig. 1 illustrates this transformation. 

 

Fig. 1: Illustration of the transformation applied 
to the initial relative velocity of leg I if it cannot 
be obtained by a gravity-assist with incoming 
relative velocity ( )1

,
i
f rel

−v . 

If max≤δ δ  then only the magnitude of ( )
,
i

i relv  is 

adjusted to ( )1
,

i
f rel

−v , if necessary. 

3.4 Detailed description of the method 

 
The inputs to the problem are the sequence of N 
planets to be encountered, the launch window I0 and 
the range of times of flight ( )

1i i N
I

≤ ≤
 allowed for each 

leg of the transfer. The total search space is therefore 

0 1 NI I I I= × × ×⋯ . One also provides N+1 integers 

greater than 1, representing the number of points on 
the grid to discretize each I i. The discretized I i are 
denoted d

iI . One can then construct recursively N 

new sets  ( )*

1

d
i i N

I
≤ ≤

 initializing from 0
dI . Then *d

iI  

is the set of possible encounter dates of planet i such 
that the spacecraft left planet i-1 at a time in *

1
d

iI −  

and the time of flight of leg i is in d
iI . From there on 

the pruning then works on the sets of encounter dates 

( )*

1

d
i i N

I
≤ ≤

. A maximum magnitude of launch and 

arrival relative velocities can be specified, as well as 
maximum values of ∆v for each leg, according to 
which the pruning will be performed. Moreover 
minimum pericenter radii have to be specified for 
each gravity-assist. 
The pruning algorithm starts by generating all 
possible first legs. Three Lambert arcs are computed 
for each element of *

0 1
d dI I× , one with no revolution, 

and two with one revolution (the long arc and the 
short arc). Out of the three Lambert arcs, only the 
one whose initial relative velocity is lowest is 
retained. If one of the Lambert arcs has a zero initial 
relative velocity, which can happen if the first 
gravity assist planet is identical to the launch planet, 

( )1
,

i
f rel

−v

 

( )
,
i

i relv  

( )
,
i

i rel′v
 

δ 

δmax 
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then that Lambert arc is directly discarded. The 
retained Lambert arc is then analyzed and the 
element in *

0 1
d dI I×  to which it corresponds can be 

invalidated if the launch velocity is above the 
specified threshold. At the end of this step, a set of 
valid points in *

0 1
d dI I×  is obtained. If there are dates 

in 0
dI  or in *d

iI  for which all Lambert arcs were 

pruned out, i.e. there are lines or columns in *
0 1
d dI I×  

full with invalid transfers, then those dates are 
pruned out and one obtains the new valid sets 

( ) ( )1
0

dV I  and ( ) ( )1 *
1
dV I . 

From the second leg onward, five Lambert arcs are 
generated for each element of * *

1 2
d dI I× : one for zero 

revolutions and the short and long arc for both the 
one revolution case and the two revolutions case. 
Like for the previous step, only the Lambert with the 
smallest non-zero relative velocity at start is retained. 
For that Lambert arc, the initial relative velocity 

( )2
,i relv  is compared to all the incoming relative 

velocity vectors ( )1
,f relv  of the first leg. For each case, 

( )2
,i rel′v  is constructed, if necessary, with the procedure 

described in subsection 3.3 and then a shaped 
trajectory is generated to replace the Lambert arc, 

such that the initial relative velocity is ( )2
,i rel′v  instead 

of the Lambert arc’s ( )2
,i relv . All other boundary 

conditions are kept the same as the Lambert arc’s. 
Thanks to the nature of the shaping, the shaping 

covers the Keplerian motion so the closer ( )2
,i rel′v  is to 

( )2
,i relv , the closer the shaped trajectory will be to the 

Lambert arc. 
Potentially one computes then a shaped trajectory for 

every node of ( ) ( ) ( ) ( )1 1 * *
0 1 2

d d dV I V I I× × . For each 

shaped trajectory one verifies if the total ∆v is 
smaller than what the user specifies and if not that 

element of ( ) ( ) ( ) ( )1 1 * *
0 1 2

d d dV I V I I× ×  is marked 

invalid. One can perform then the same forward and 
backward pruning as for the first leg. If there are 

dates of encounter in ( ) ( )1 *
1
dV I  and ( ) ( )1 *

2
dV I  such 

that all legs arriving on those dates are invalid, then 
those dates are pruned out for the rest of the 
computations. In an analogous way, if all possible 
departing legs are invalid for a given date, then that 
date is pruned out. One obtains new sets of valid 

dates ( ) ( )2
0

dV I ,  ( ) ( )2 *
1
dV I  and ( ) ( )1 *

2
dV I . 

The trajectories of the following legs are generated 
and assessed in the same way as those of the second 

one, and each time the set of valid dates is updated 
with forward and backward pruning. 
The last leg is special if the aim is to rendezvous the 
final planet. Indeed, in that case, the Lambert arc is 
not a good way to generate the first trajectory leg, 
because the arrival velocity can be far from the 
planet’s velocity. In that case, a shaped trajectory is 
generated instead of the Lambert arc, where the 
initial velocity is not constrained, and the final 
velocity is that of the planet. The coefficients a4, a6 
and b3 are set to zero in the expressions of R and Φ in 
(9). 
At this point, one has to analyze the distribution of 
the dates defining the acceptable pairs of consecutive 
legs. An acceptable pair of legs ( ), 1j j +  will be 

defined by a triplet of dates ( )1 1, ,j j jt t t− +  that is an 

element of ( ) ( ) ( ) ( ) ( ) ( )1 1* * *
1 1

j j ji i id d d
j j jV I V I V I− +

− +× × . 

These acceptable triplets of dates form a subset 
( ) ( ) ( ) ( ) ( ) ( )1 1* * *

, 1 1 1
j j ji i id d d

j j j j jV V I V I V I− +

+ − +⊂ × × . One 

can then proceed to reconstruct the continuous search 
spaces from the pruned discretized ones. For this, the 
connected components , 1

k
j jV +  inside every , 1j jV +  are 

identified and boxes , 1
k
j jBV +  are created around each 

one of them. Finally, hyperboxes lBV  inside I are 
identified such that an element inside it has each of 
its components belonging to one of the , 1

k
j jBV + . 

The hyperboxes are disconnected subsets of I, and 
one can then apply a global optimisation algorithm 
on each one of them. In this study, a differential 
evolution algorithm was applied. When applying it, 
the LQ controller was called after the shaping in 
order to improve the transfers. 
 

3.5 Computational effort 

During the pruning, the part that takes by far the 
most time is the generation of the shaped trajectory. 
The trajectory shaping is called from the second leg 
onward. If one discretizes the initial and arrival dates 
of the leg into k points, as well as the previous leg’s 
initial dates, then the shapes are called potentially k3 
times. This is the case for all the legs except the first 
and the last, which adds up to ( ) 31N k− . In the final 

leg there are two calls to the trajectory shaping for 
each node, adding up to 38k  calls. So in total, the 

shaping is called at most ( ) 37N k+  times. 

4 TEST CASES 
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This section presents the test cases to which the 
shaping and the new incremental pruning was 
applied to. Rendezvous missions are presented from 
Earth to asteroid Apollo and Jupiter. The 
computations were performed on Intel Core 2 Duo 
running at 3 GHz. The codes were written in Matlab 
and were run in a Linux environment. The 
trajectories with the lowest ∆v were optimized with 
DITAN with the objective of minimising the 
propellant mass with the constraint of a peak thrust 
equal to the peak thrust of the initial guess.  
 

4.1 Earth-Earth-Apollo rendezvous 

 
This mission scenario has four leg. Apollo’s orbital 
elements are reported in Table 1. 

Table 1 Orbital elements of Asteroid Apollo 

Semi-major axis 1.471 AU 
Eccentricity 0.56 
Inclination 6.4° 
Ascending node 25.9 
Argument of periapsis 285.7 

 
The launch window I0 was set to be the interval 
between 1st January 2010 and 1st January 2015. I0 
was discretized into 240 equidistant dates, i.e. in 
average three launch dates per month. The first leg’s 
range of times of flight was set to [200 d ; 800 d] and 
discretized into 250 points, the second one spanned 
[200 d ; 1000 d] and split into 300 values. The initial 
relative velocity was allowed to be 5 km/s maximum 
and a limit was set on the second leg’s total ∆v to 10 
km/s. The minimal altitude allowed for the gravity-
assist at Earth was 200 km. The pruned pairs of legs 
are plotted in Fig. 2. 

 

Fig. 2: plotted are the triplets of dates, 
corresponding to the pair of Earth-Earth-Apollo 
legs, that were not pruned 

In total, 29 separate hyperboxes were obtained by the 
pruning after 8.5 hours of computation, and a 
differential evolution algorithm was run on both of 
them, in order to locate the global minimum, taking 
8.9 minutes each. 
 
The trajectory with the lowest ∆v obtained from the 
DE turned out to be of 5.32 km/s with an initial 
launch velocity of 4.93 km/s. One should note that 
part of the ∆v of the low thrust transfer includes 
gravity-loss. The total time of flight is 3.17 years. 
The local optimization with DITAN resulted in a 
transfer also lasting 3.17 years and requiring 4.49 
km/s of ∆v and an initial launch velocity of 5.00 
km/s. 
 Table 2 provides the dates of encounter of each 
planet for the best trajectory. 
Fig. 3 and Fig. 4 show that the optimized transfer is 
close to the initial guess one. 
 

 Table 2: Dates at each planet for the LTMGA 
trajectory with the lowest ∆v. 
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Fig. 3 Thrust profile of the result from DE with 
the lowest ∆v and its optimized solution from 
DITAN 

 DE DITAN 

Launch from Earth 9/2/2011 19/3/2011 

Earth GA 27/7/2012 4/9/2012 

Rdv at Apollo 12/4/2014 20/5/2014 
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Fig. 4 Trajectory plo of the result from DE with 
the lowest ∆v and its optimized solution from 
DITAN 

 

4.2 Earth-Venus-Earth-Earth-Jupiter rendezvous 

 
This LTMGA transfer has four legs. The launch 
window I0 was set to be the interval between 1st 
January 2010 and 1st January 2020. I0 was discretized 
into 240 equidistant dates, i.e. in average two launch 
dates per month. The first leg’s range of times of 
flight was set to [50 d ; 500 d], the second one’s to 
[50 d ; 700 d], the third one to [100 d ; 1000 d] and 
the fourth to [500 d ; 2000 d]. The ranges of time of 
flight were discretized into respectively 45, 65, 90 
and 75 points. The initial relative velocity was 
allowed to be 5 km/s at most and limits were set on 
the last three leg’s total ∆v to 10 km/s, 10 km/s and 
15 km/s respectively. The minimal altitude allowed 
for all gravity-assists was 200 km. The pruned pairs 
of legs are plotted in Fig. 5 to Fig. 7. 

 

Fig. 5: plotted are the triplets of dates, 
corresponding to the pair of Earth-Venus-Earth 
legs, that were not pruned  

 

Table 3: Dates at Each planet for the LTMGA 
trajectory with the lowest ∆v. 

 

Fig. 6: plotted are the triplets of dates, 
corresponding to the pair of Venus-Earth-Earth 
legs, that were not pruned not pruned for the pair 
of first and second legs. 

 

Fig. 7: plotted are the triplets of dates, 
corresponding to the pair of Earth-Earth-Jupiter 
legs, that were not pruned 

In total, 5 separate hyperboxes were obtained by the 
pruning after 26 minutes of computation, and a 
differential evolution (DE) algorithm was run on all 

 DE DITAN 

Launch from Earth 15/1/2017 3/2/2017 

Venus GA 20/4/2017 20/4/2017 

Earth GA 1 28/8/2018 1/9/2018 

Earth GA 2 25/3/2021 25/3/2021 

Rendezvous at Jupiter 8/9/2024 27/12/2024 
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hyperboxes, in order to locate the global minimum. 
In average, each minimisation ran for 30 minutes in 
average. 
 

The lowest ∆v obtained from the DE was 7.66 km/s 
with an initial launch velocity of 3.58 km/s. The ∆v 
includes the gravity loss due to the low and long 
nature of the thrust arcs. This result is to be 
compared with the Hohmann transfer’s total ∆v of 
14.44 km/s. The total time of flight amounted to 7.65 
years. The optimization with DITAN resulted in a 
transfer of 7.89 years of duration with a ∆v of 6.64 
km/s and with an initial launch velocity of 5 km/s.  

Fig. 8 and Fig. 9  
Table 3Table 3 provides the dates of encounter of 
each planet for the best trajectory. 
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Fig. 8 Thrust profile of the result from DE with 
the lowest ∆v and its optimized solution from 
DITAN 
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Fig. 9 Trajectory plo of the result from DE with 
the lowest ∆v and its optimized solution from 
DITAN 

 

CONCLUSION 
 
A method to construct and globally optimize low 
thrust multiple gravity assist trajectories was 
presented in this paper. The advantage is that no 
powered swingby is necessary. A new incremental 
pruning scheme is also proposed in order to reduce 
the search space of the global optimization. The 
numerical results are promising and will be further 
studied and analyzed for further improvement of the 
algorithms. 
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