Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Direct transcription of low-thrust trajectories with finite trajectory elements

Zuiani, Federico and Vasile, Massimiliano and Palmas, Alessandro and Avanzini, Giulio (2010) Direct transcription of low-thrust trajectories with finite trajectory elements. In: 61st International Astronautical Congress, IAC 2010, 2010-09-27 - 2010-10-01.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper presents novel approach to Low-Thrust trajectory design, based on a first order approximate analytical solution of Gauss planetary equations. The analytical solution is fairly accurate and could be employed for a fast propagation of perturbed Keplerian motion. Thus, it has been integrated in a Direct Transcription Method based one Finite Perturbed Elements in Time (FPET). It has been proved that this method is suitable for the solution of boundary value transfer problem by few iterations of a gradient based local optimizer. This allows in turn to include the FPET Transcription method into a global optimization tool to solve orbital transfer problem where both total ΔV and transfer time need to be minimised with respect to departure and arrival dates. To prove the concept, two transfer problems have been investigated, the first being a direct rendez-vous transfer between Earth and Mars; the second is a spiralling orbit rising for a low Earth orbit. In both cases the results obtain confirmed the soundness of the proposed approach.