Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Artificial neural network prediction of weld geometry performed using GMAW with alternating shielding gases

Campbell, Stuart and Galloway, Alexander and McPherson, Norman (2012) Artificial neural network prediction of weld geometry performed using GMAW with alternating shielding gases. Welding Journal, 91 (6). 174S-181S. ISSN 0043-2296

[img] Microsoft Word
Galloway_AM_Pure_Artifical_neural_network_prediction_of_weld_geometry_performed_using_GMAW_with_alternating_shielding_gases_12_Apr_2011.docx - Preprint

Download (5MB)

Abstract

An Artificial Neural Network (ANN) model has been applied to the prediction of key weld geometries produced using Gas Metal Arc Welding (GMAW) with alternating shielding gases. This is a recently developed method of supplying shielding gases to the weld area in which the gases are discretely supplied at a given frequency. The model can be used to predict the penetration, leg length and effective throat thickness for a given set of weld parameters and alternating shielding gas frequency. A comparison between the experimental and predicted geometries matched closely and demonstrates the effectiveness of this software approach in predicting weld outputs. The model has shown that the application of alternating shielding gases increases the penetration and effective throat thickness of a fillet weld whilst the leg length is reduced. A sensitivity analysis was performed which showed that the travel speed is the most influential input parameter when predicting weld geometries, this is to be expected for any given welding set-up due to the influence of the travel speed on the heat input. The sensitivity analysis also showed that the shielding gas configuration had the lowest influence on the output of the model. The output from the model has demonstrated that the use of alternating shielding gases during GMAW results in a step change in the weld metal geometry. This suggests that, in the case of alternating shielding gases, an increased travel speed is required to produce a similar weld geometry to that of the conventional Ar/20%CO2 technique.