Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Bi-directional terahertz emission from gold-coated nanogratings by excitation via femtosecond laser pulses

Garwe, F. and Schmidt, A. and Zieger, G. and May, T. and Wynne, K. and Huebner, U. and Zeisberger, M. and Paa, W. and Stafast, H. and Meyer, H. -G. (2011) Bi-directional terahertz emission from gold-coated nanogratings by excitation via femtosecond laser pulses. Applied Physics B: Lasers and Optics, 102 (3). pp. 551-554. ISSN 0946-2171

Full text not available in this repository. Request a copy from the Strathclyde author


We report on the investigation of terahertz (THz) emission from gold-coated nanogratings (500 nm grating constant) upon femtosecond laser irradiation (785 nm, 150 fs, 1 kHz, a parts per thousand currency sign1 mJ/pulse). Unlike common assumptions, THz emission is not only observed in case of rear side irradiation (through substrate (Welsh et al. in Phys. Rev. Lett. 98:026803, 2007; Welsh and Wynne in Opt. Express 17:2470-2480, 2009)) of the nanograting, but also in case of front side excitation (through air). Furthermore in both cases, THz emission propagates in the direction of laser beam propagation and reverse. Based on these findings, we suggest a new approach to describe the newly observed phenomena. Using a highly sensitive and fast superconducting transition edge sensor (TES) as calorimeter, it was possible to directly measure the absolute energy of the emitted THz pulses in a defined spectral and spatial range, enabling for the first time a quantitative analysis of the THz emission process.