Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Freezing coherent field growth in a cavity by the quantum zeno effect

Bernu, J. and Deleglise, S. and Sayrin, C. and Kuhr, S. and Dotsenko, I. and Brune, M. and Raimond, J. M. and Haroche, S. (2008) Freezing coherent field growth in a cavity by the quantum zeno effect. Physical Review Letters, 101 (18). ISSN 0031-9007

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We have frozen the coherent evolution of a field in a cavity by repeated measurements of its photon number. We use circular Rydberg atoms dispersively coupled to the cavity mode for an absorption-free photon counting. These measurements inhibit the growth of a field injected in the cavity by a classical source. This manifestation of the quantum Zeno effect illustrates the backaction of the photon number determination onto the field phase. The residual growth of the field can be seen as a random walk of its amplitude in the two-dimensional phase space. This experiment sheds light onto the measurement process and opens perspectives for active quantum feedback.