Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Indirect study of the astrophysically important 15O(α,γ)19Ne reaction through 2H(18Ne,19Ne)1H

Laird, A.M. and Cherubini, S. and Ostrowski, A.N. and Aliotta, M. and Davinson, T. and Di Pietro, A. and Figuera, P. and Groombridge, D. and Galster, W. and Graulich, J.S. and Hinnefeld, J. and Lattuada, M. and Leleux, P. and Michel, L. and Musumarra, A. and Ninane, A. and Pellegriti, M.G. and Shotter, A.C. and Spitaleri, A. and Tumino, A. and Vervier, J. and Woods, P. (2002) Indirect study of the astrophysically important 15O(α,γ)19Ne reaction through 2H(18Ne,19Ne)1H. Physical Review C: Nuclear Physics, 66 (4). pp. 1-4. ISSN 0556-2813

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The 15O(α,γ)19Ne reaction is generally considered as a potential breakout reaction from the hot CNO cycle. Under nova conditions, the reaction rate is dominated by a single sub-Coulomb resonance at Ec.m.=504 keV which corresponds to a 19Ne excitation energy of ER=4.033 MeV. Results from a d(18Ne,19Ne)p experiment show that states of astrophysical interest are populated in this reaction. An upper limit for the α-branching ratio of the 4.033 MeV state was identified and branching ratios for other states in 19Ne were found to be in good agreement with stable beam based results.