Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

First search for gravitational waves from the youngest known neutron star

Abadie, J. and Abbott, B. P. and Abbott, R. and Abernathy, M. and Adams, C. and Adhikari, R. and Lockerbie, N. A. and Tokmakov, K. V. and Collaboration, LIGO Sci (2010) First search for gravitational waves from the youngest known neutron star. Astrophysical Journal, 722 (2). pp. 1504-1513. ISSN 0004-637X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We present a search for periodic gravitational waves from the neutron star in the supernova remnant Cassiopeia A. The search coherently analyzes data in a 12 day interval taken from the fifth science run of the Laser Interferometer Gravitational-Wave Observatory. It searches gravitational-wave frequencies from 100 to 300 Hz and covers a wide range of first and second frequency derivatives appropriate for the age of the remnant and for different spin-down mechanisms. No gravitational-wave signal was detected. Within the range of search frequencies, we set 95% confidence upper limits of (0.7-1.2) x 10(-24) on the intrinsic gravitational-wave strain, (0.4-4) x 10(-4) on the equatorial ellipticity of the neutron star, and 0.005-0.14 on the amplitude of r-mode oscillations of the neutron star. These direct upper limits beat indirect limits derived from energy conservation and enter the range of theoretical predictions involving crystalline exotic matter or runaway r-modes. This paper is also the first gravitational-wave search to present upper limits on the r-mode amplitude.