Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1

Abadie, J. and Abbott, B. P. and Abbott, R. and Abernathy, M. and Accadia, T. and Acernese, F. and Lockerbie, N. A. and Tokmakov, K. V. and Collaboration, LIGO Sci and Collaboration, Virgo (2010) Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Physical Review D, 82 (10). p. 102001. ISSN 1550-2368

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-Wave Observatory and Virgo detectors. Five months of data were collected during the Laser Interferometer Gravitational-Wave Observatory's S5 and Virgo's VSR1 science runs. The search focused on signals from binary mergers with a total mass between 2 and 35M(circle dot). No gravitational waves are identified. The cumulative 90confidence upper limits on the rate of compact binary coalescence are calculated for nonspinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8: 7 X 10(-3) yr(-1) L-10(-1), 2.2 X 10(-3) yr(-1) L-10(-1), and 4.4 X 10(-4) yr(-1) L-10(-1), respectively, where L-10 is 10(10) times the blue solar luminosity. These upper limits are compared with astrophysical expectations.