Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1

Abadie, J. and Abbott, B. P. and Abbott, R. and Abernathy, M. and Accadia, T. and Acernese, F. and Lockerbie, N. A. and Tokmakov, K. V. and Collaboration, LIGO Sci and Collaboration, Virgo (2010) Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Physical Review D, 82 (10). p. 102001. ISSN 1550-2368

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-Wave Observatory and Virgo detectors. Five months of data were collected during the Laser Interferometer Gravitational-Wave Observatory's S5 and Virgo's VSR1 science runs. The search focused on signals from binary mergers with a total mass between 2 and 35M(circle dot). No gravitational waves are identified. The cumulative 90confidence upper limits on the rate of compact binary coalescence are calculated for nonspinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8: 7 X 10(-3) yr(-1) L-10(-1), 2.2 X 10(-3) yr(-1) L-10(-1), and 4.4 X 10(-4) yr(-1) L-10(-1), respectively, where L-10 is 10(10) times the blue solar luminosity. These upper limits are compared with astrophysical expectations.