Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Computing the set of Epsilon-efficient solutions in multiobjective space mission design

Schütze, Oliver and Vasile, Massimiliano and Coello Coello, Carlos A. (2011) Computing the set of Epsilon-efficient solutions in multiobjective space mission design. Journal of Aerospace Computing, Information, and Communication, 8 (3). pp. 53-70. ISSN 1542-9423

[img]
Preview
PDF
Vasile_M_Pure_Computing_the_set_of_epsilon_efficient_solutions_in_multi_objective_space_mission_design_Apr_2011.pdf - Preprint

Download (1MB) | Preview

Abstract

In this work, we consider multiobjective space mission design problems. We will start from the need, from a practical point of view, to consider in addition to the (Pareto) optimal solutions also nearly optimal ones. In fact, extending the set of solutions for a given mission to those nearly optimal significantly increases the number of options for the decision maker and gives a measure of the size of the launch windows corresponding to each optimal solution, i.e., a measure of its robustness. Whereas the possible loss of such approximate solutions compared to optimal—and possibly even ‘better’—ones is dispensable. For this, we will examine several typical problems in space trajectory design—a biimpulsive transfer from the Earth to the asteroid Apophis and two low-thrust multigravity assist transfers—and demonstrate the possible benefit of the novel approach. Further, we will present a multiobjective evolutionary algorithm which is designed for this purpose.