Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Distributed crystal fibre sensing for extreme environments

Dalzell, Craig J. and Han, Thomas P. J. and Ruddock, Ivan S. (2010) Distributed crystal fibre sensing for extreme environments. In: Fourth European Workshop on Optical Fibre Sensors, 2010-09-08 - 2010-09-10.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Distributed sensing of temperature can be achieved by using time-correlated two-photon excited fluorescence (TPF). To assess the extension of this technique to crystal fibres for high temperature applications, various aspects are considered including the two-photon absorption cross-section (delta), dopant density and the geometry of single crystal fibres. By comparing the fluorescence yield for two-photon excitation with that for single-photon excitation of the same transition, d for ruby was measured over the 0.8-1.2 mu m range with maximum room temperature values of 5.9 x 10(-3) GM for e-polarisation and 4.6 x 10(-3) GM for o-polarisation at 840 nm. It is shown that values of this magnitude are adequate for a practical TPF based crystal fibre sensor to be realised.