Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Effects of energy absorption on Raman amplification in plasma

Ersfeld, Bernhard and Farmer, John and Raj, Gaurav and Jaroszynski, Dino A. (2009) Effects of energy absorption on Raman amplification in plasma. In: Conference on Harnessing Relativistic Plasma Waves as Novel Radiation Sources From Terahertz to X-Rays and Beyond, 2009-04-21 - 2009-04-23.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Stimulated Raman backscattering in plasma has been suggested as a way to amplify short laser pulses to intensities not limited by damage thresholds as in chirped pulse amplification using conventional media. Energy is transferred between two transverse electromagnetic waves, pump and probe, through the parametric interaction with a longitudinal Langmuir wave that is ponderomotively excited by their beat wave. The increase of the plasma temperature due to collisional absorption of the pump wave modifies the dispersion of the Langmuir wave: firstly, its resonance frequency rises (Bohm-Gross shift), and secondly, Landau damping sets in. The frequency shift acts in a similar way to a chirp of the pump frequency, or a density ramp: different spectral components of the probe satisfy the resonance condition at different times. This limits their growth, while increasing the bandwidth of the amplifier, thus leading to superradiant amplification. Landau damping may shorten the probe pulse, but reduces the amplification efficiency. We investigate these effects analytically and using numerical simulations in order to assess their importance in experimental demonstrations, and the possibility of applications.