Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Generation of 3 GW microwave pulses in X-band from a combination of a relativistic backward-wave oscillator and a helical-waveguide compressor

Bratman, V. L. and Denisov, G. G. and Kolganov, N. G. and Mishakin, S. V. and Samsonov, S. V. and Cross, A. W. and He, W. and Zhang, L. and McStravick, M. and Whyte, C. G. and Young, A. R. and Ronald, K. and Robertson, C. W. and Phelps, A. D. R. (2010) Generation of 3 GW microwave pulses in X-band from a combination of a relativistic backward-wave oscillator and a helical-waveguide compressor. Physics of Plasmas, 17 (11). ISSN 1070-664X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The phenomenon of passive compression of frequency-modulated (FM) pulses in a dispersive media (DM) was used to increase the peak microwave power up to the multigigawatt level A helically corrugated waveguide was used as the DM, while a relativistic X-band backward-wave oscillator (RBWO) with a descending-during-the-pulse accelerating voltage served as a source of FM pulses Compression of pulses down to a halfwidth of 2 2 ns accompanied by a 4 5-fold power increase up to a value of about 3 2 GW has been demonstrated.