Picture of flying drone

Award-winning sensor signal processing research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in award-winning research into technology for detecting drones. - but also other internationally significant research from within the Department of Electronic & Electrical Engineering.

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The use of a hybrid resonator consisting of one-dimensional and two-dimensional Bragg reflectors for generation of spatially coherent radiation in a coaxial free-electron laser

Ginzburg, N.S. and Peskov, N.Yu. and Sergeev, A.S. and Phelps, A.D.R. and Cross, A.W. and Konoplev, I.V. (2002) The use of a hybrid resonator consisting of one-dimensional and two-dimensional Bragg reflectors for generation of spatially coherent radiation in a coaxial free-electron laser. Physics of Plasmas, 9 (6). pp. 2798-2802. ISSN 1070-664X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The use of a novel hybrid scheme of a two-mirror Bragg resonator consisting of one-dimensional (1D) and two-dimensional (2D) reflectors is suggested for generation of powerful spatially coherent radiation in a coaxial free-electron laser driven by a large-size (102-103 wavelengths) high-current annular relativistic electron beam. The 2D Bragg reflector is positioned at the cathode side of the oscillator to provide synchronization of radiation from the oversized electron beam via transverse energy fluxes, which arise due to scattering on the 2D Bragg structure. The conventional 1D Bragg reflector is positioned at the collector side to complete the feedback.