Picture of flying drone

Award-winning sensor signal processing research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in award-winning research into technology for detecting drones. - but also other internationally significant research from within the Department of Electronic & Electrical Engineering.

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Ultrasonic wave propagation in heterogeneous media

Mulholland, Anthony J. (2010) Ultrasonic wave propagation in heterogeneous media. In: Proceedings of ICNAAM 2010: International Conference of Numerical Analysis and Applied Mathematics 2010. American Institute of Physics, pp. 1745-1748.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Piezoelectric ultrasonic transducers typically employ composite structures to improve their transmission and reception sensitivities. The geometry of the composite is regular with one dominant length scale and, since these are resonant devices, this dictates the central operating frequency of the device. In order to construct a wide bandwidth device it would seem natural therefore to utilise resonators that span a range of length scales. In this paper we consider such a device and build a theoretical model to predict its performance. A fractal medium is used as this contains a wide range of length scales and yields to a renormalisation approach. The propagation of an ultrasonic wave in this heterogeneous medium is then analysed and used to construct expressions for the electrical impedance, and the transmission and reception sensitivities of this device as a function of the driving frequency. ©