Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Numerical solutions of stochastic differential delay equations under the generalized Khasminskii-type conditions

Mao, Xuerong (2011) Numerical solutions of stochastic differential delay equations under the generalized Khasminskii-type conditions. Applied Mathematics and Computation, 217 (12). pp. 5512-5524. ISSN 0096-3003

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The classical existence-and-uniqueness theorem of the solution to a stochastic differential delay equation (SDDE) requires the local Lipschitz condition and the linear growth condition (see e.g. [11], [12] and [20]). The numerical solutions under these conditions have also been discussed intensively (see e.g. [4], [10], [13], [16], [17], [18], [21], [22] and [24]). Recently, Mao and Rassias [14] and [15] established the generalized Khasminskii-type existence-and-uniqueness theorems for SDDEs, where the linear growth condition is no longer imposed. These generalized Khasminskii-type theorems cover a wide class of highly nonlinear SDDEs but these nonlinear SDDEs do not have explicit solutions, whence numerical solutions are required in practice. However, there is so far little numerical theory on SDDEs under these generalized Khasminskii-type conditions. The key aim of this paper is to close this gap.