Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Basic concepts in plasma accelerators

Bingham, Robert (2006) Basic concepts in plasma accelerators. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences, 364 (1840). pp. 559-575. ISSN 1364-503X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In this article, we present the underlying physics and the present status of high gradient and high-energy plasma accelerators. With the development of compact short pulse high-brightness lasers and electron and positron beams, new areas of studies for laser/particle beam?matter interactions is opening up. A number of methods are being pursued vigorously to achieve ultra-high-acceleration gradients. These include the plasma beat wave accelerator (PBWA) mechanism which uses conventional long pulse (?100ps) modest intensity lasers (I?1014?1016Wcm?2), the laser wakefield accelerator (LWFA) which uses the new breed of compact high-brightness lasers (<1ps) and intensities >1018Wcm?2, self-modulated laser wakefield accelerator (SMLWFA) concept which combines elements of stimulated Raman forward scattering (SRFS) and electron acceleration by nonlinear plasma waves excited by relativistic electron and positron bunches the plasma wakefield accelerator. In the ultra-high intensity regime, laser/particle beam?plasma interactions are highly nonlinear and relativistic, leading to new phenomenon such as the plasma wakefield excitation for particle acceleration, relativistic self-focusing and guiding of laser beams, high-harmonic generation, acceleration of electrons, positrons, protons and photons. Fields greater than 1GVcm?1 have been generated with monoenergetic particle beams accelerated to about 100MeV in millimetre distances recorded. Plasma wakefields driven by both electron and positron beams at the Stanford linear accelerator centre (SLAC) facility have accelerated the tail of the beams.