
Chapter 2
Resistance Distance, Information Centrality,
Node Vulnerability and Vibrations in Complex
Networks

Ernesto Estrada and Naomichi Hatano

Abstract We discuss three seemingly unrelated quantities that have been intro-
duced in different fields of science for complex networks. The three quantities are
the resistance distance, the information centrality and the node displacement. We
first prove various relations among them. Then we focus on the node displacement,
showing its usefulness as an index of node vulnerability. We argue that the node dis-
placement has a better resolution as a measure of node vulnerability than the degree
and the information centrality.

2.1 Introduction

The study of complex networks is a truly multidisciplinary subject which covers
many areas of nature, technology, and society [1, 27, 30]. These networks are graph-
theoretic representations of complex systems in which the nodes of a graph repre-
sent the entities of the system and the links represent the relationship between them
[1, 27, 30]. The use of the graphs for studying complex systems is not new. For
instance, the study of social networks is a discipline with a long tradition of using
graphs [19] and has provided many theoretical tools that are now used in the analy-
sis of networks in many disciplines. In the physical sciences, graph analysis of rela-
tively small systems has also been in use for long time. Some well known examples
include the entire area of chemical graph theory [31] and the use of the graphs in
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statistical mechanics [20]. Then, it is not rare that concepts arising in one discipline
are rediscovered and used in another with success. For instance, the concept of node
centrality [18, 32], which arises in the study of social networks, is now widely used
in the analysis of biological, ecological, and infrastructural networks [5, 7, 9, 11,
13, 21, 22]. Another example is given by the Wiener index, which was introduced in
1947 [34] and defined as the sum of the distances of all shortest paths in the graph
representing hydrocarbon molecules. This index has proved to be useful in describ-
ing the boiling points and other physico-chemical properties of organic molecules
[10]. The mean Wiener index is nowadays known as the average shortest-path dis-
tance and it has been instrumental in the definition of the concept of ‘small-world’
networks [33]. Here we are interested in analysing three concepts arising from dif-
ferent scientific disciplines, in the new context of complex networks. The first of
these concepts is the resistance distance introduced in mathematical chemistry by
Klein and Randić in 1993 [25] on the basis of electrical network theory. The resis-
tance distance is defined as the effective resistance between two nodes in a graph
when a battery is connected across them and the links are considered as unit re-
sistors. The second concept is the information centrality developed by Stephenson
and Zelen in 1989 [29], which tries to capture the information that can be transmit-
ted between any two points in a connected network. The third, seemingly unrelated
concept is the one of physical vibrations in a network [14, 15]. We consider the
displacement of every node in a network due to vibrations/oscillations as a mea-
sure of the perturbations that are caused by external factors such as social agitation,
economic crisis and physiological conditions. The main objective of this work is to
show that these three seemingly unrelated concepts are mathematically connected.
Then, we can consider the physically appealing concept of the node vibration as a
fundamental concept for complex networks, which is useful in defining: (i) a topo-
logical metric, e.g. the resistance distance; (ii) a node centrality, e.g. the information
centrality; and (iii) a measure of node vulnerability.

2.2 Resistance Distance in Networks

Let us associate a connected network with an electrical network in such a way that
we replace each link of the network with a resistor of electrical resistance equal to
one ohm. Then we can calculate the resistance Ωij between any pair of nodes i and
j in the network by the Kirchhoff and Ohm laws. Such resistance is known to be
a distance function [25] and called the resistance distance. It was introduced in a
seminal paper by Klein and Randić a few years ago [25] and has been intensively
studied in mathematical chemistry [14, 15, 25, 29, 35]. The Moore–Penrose gener-
alised inverse (or the pseudo-inverse) L+ of the graph Laplacian L, which has been
proved to exist for any connected graph, gives the following formula [15, 25, 29]
for computing the resistance distance:

Ωij = (
L+)

ii
+ (

L+)
jj

− (
L+)

ij
− (

L+)
ji

(2.1)
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Fig. 2.1 Simple graph used
for illustration of the concepts
of the shortest path and the
resistance distance

for i �= j , where L = D − A with D the diagonal matrix of degrees ki and A the
adjacency matrix of the network.

Let L(i) be the matrix resulting from removing the ith row and column of the
Laplacian and let L(i, j) the matrix resulting from removing both the ith and j th
rows and columns of L. Then, it has been proved that the resistance distance can be
also calculated as

Ωij = det L(i, j)

det L(i)
. (2.2)

The resistance matrix Ω is the matrix whose non-diagonal elements are the resis-
tance distance Ωij with the diagonal elements Ωii = 0 [25]. In Fig. 2.1, we illustrate
a simple graph having six nodes whose resistance distance matrix is given below.
For the sake of comparison, we also give the topological-distance matrix in which
the element dij is given by the number of links in the shortest path between the
nodes i and j .

Ω =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

0.00 1.00 1.75 2.00 1.75 2.75
0.00 0.75 1.00 0.75 1.75

0.00 0.75 1.00 2.00
0.00 0.75 1.75

0.00 1.00
0.00

⎤

⎥⎥⎥
⎥⎥⎥
⎦

, D =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

0 1 2 3 2 3
0 1 2 1 2

0 1 2 3
0 1 2

0 1
0

⎤

⎥⎥⎥
⎥⎥⎥
⎦

.

It is straightforward to realise that for networks that contain no cycles, i.e. trees,
both matrices coincide. However, the presence of cycles reduces the resistance dis-
tance in comparison with the topological distance. The semi-sum of all entries of
the D matrix is known as the Wiener index W(G). Then, the average path length l̄ is
given by l̄ = 2W(G)/n(n − 1). The analogue of the Wiener index in the context of
the resistance distance matrix is known as the Kirchhoff index Kf and is defined as
Kf = ∑

i<j Ωij [6, 25, 35, 36, 38]. It is known that Kf can be expressed in terms
of the Laplacian eigenvalues as follows [35]:

Kf = n

n∑

j=2

1

λj

= nTr L+. (2.3)

The Wiener and Kirchhoff indices for the graph illustrated in Fig. 2.1 are 20.75 and
27, respectively.
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2.3 Information Centrality

The information centrality (IC) was introduced by Stephenson and Zelen [29] as a
measure of node centrality of social networks. It is based on information that can be
transmitted between any two points in a connected network. The motivation for this
measure comes from the theory of statistical estimation. Here a path connecting two
nodes is considered as a “signal”, while the “noise” in the transmission of the signal
is measured by the variance of this signal. The information measure Iij between
two nodes is defined as the reciprocal of the topological distance dij between the
corresponding nodes, Iij = 1/dij . Stephenson and Zelen [29] proposed to define
Iii as infinite for computational purposes, which makes 1/Iii = 0. The information
centrality of the node i is then defined by using the harmonic average:

IC(i) =
[

1

n

∑

j

1

Iij

]−1

. (2.4)

If A is the adjacency matrix of a network, D a diagonal matrix of the degree of
each node and J a matrix with all its elements equal to one, then IC is defined by
inverting the matrix B ≡ D − A + J = L + J, from which the information matrix is
obtained as follows:

I−1
ij = (

B−1)
ii

+ (
B−1)

jj
− 2

(
B−1)

ij
. (2.5)

The information centrality for the nodes of the graph illustrated in Fig. 2.1 is
IC(1) = IC(6) = 0.649, IC(2) = IC(5) = 1.143 and IC3 = IC(4) = 0.960.

2.4 Vibrations in Complex Networks

We now introduce a recently proposed measure of node vulnerability, namely the
node displacement [14, 15]. For the purpose, we regard the nodes of the complex
network as balls of a common mass and the links as springs of a common spring
constant k. We immerse this system of balls and springs in a thermal bath of inverse
temperature β and observe the amplitude of thermal fluctuation of each ball. The
thermal bath simulates an external stress to the network, such as economical crisis,
social agitation, environmental pressure or physiological conditions. The amplitude
of thermal fluctuation of a ball tells us how vulnerable the corresponding node is to
such stresses.

The vibrational potential energy of the network can be expressed as

V (x) = k

2
xT Lx, (2.6)

where the ith component xi of the vector x denotes the displacement of the node i

from its static position due to thermal fluctuation and L is the same graph Laplacian
as used in (2.1). The probability distribution of the displacement of the nodes may
be given by the Boltzmann distribution according to the potential energy:

P(x) = e−βV (x)

Z
= 1

Z
exp

(
−βk

2
xT Lx

)
, (2.7)
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where Z is the partition function of the network:

Z ≡
∫

dx exp

(
−βk

2
xT Lx

)
. (2.8)

The mean square displacement of a node i is given by

(Δxi)
2 ≡ 〈

x2
i

〉 =
∫

x2
i P (x) dx (2.9)

and the correlation between the displacements of nodes i and j is given by

〈xix〉j =
∫

xixjP (x) dx, (2.10)

where 〈· · ·〉 denotes the average with respect to P(x).
We can calculate these quantities by diagonalising the graph Laplacian L. Here

we should take care of the fact that the Laplacian of a connected network has a
spectrum of the form 0 = λ1 ≤ · · · ≤ λn; i.e. it has one zero eigenvalue apart from
positive eigenvalues. In fact, we should not let the zero eigenvalue contribute in the
calculation because the mode μ = 1 represents the motion of the centre of mass
and hence its vibrational energy is zero; see [14, 15] for details of the calculation.
Here we simply list the results of the calculation. We can represent the results in the
following unified form [14, 15]:

〈xix〉j =
n∑

μ=2

(ψμ)i(ψμ)j

βkλv

= 1

βk

(
L+)

ij
, (2.11)

where ψμ is the eigenvector of the mode μ and L+ is again the Moore–Penrose
generalised inverse of the graph Laplacian [35]. The case i = j gives the mean
square displacement (Δxi)

2 ≡ 〈x2
i 〉 in (2.11). This quantity is obviously related to

the resistance distance defined by (2.11), which we will elucidate in the next section.
Meanwhile, (2.11) is followed by the thermal average of the vibrational potential
energy (2.6) in the form

〈
V (x)

〉 = 1

2

n∑

i=1

ki

〈
x2
i

〉 −
∑

i,j∈E

〈xixj 〉 = 1

βk

n∑

i=1

ki

(
L+)

ii
−

∑

i,j∈E

(
L+)

ij
. (2.12)

2.5 Node Displacements and Resistance Distance

Hereafter we set βk ≡ 1 for simplicity. By using (2.11) in (2.1), we have

Ωij = ⌊〈
x2
i

〉 + 〈
x2
j

〉 − 〈xixj 〉 − 〈xjxi〉
⌋ = 〈

(xi − xj )
2〉. (2.13)

Roughly speaking, the right-hand side of (2.13) is small if the nodes i and j vibrate
coherently in the same direction and large if they move in the opposite directions.

More rigorously, let us focus on the mode μ = 2 of the graph Laplacian L. Then
the corresponding eigenvector ψ2 is called the Fiedler vector [17]. This vector is
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known to define a partitioning of the graph [17] in the following way. The nodes
of a graph are partitioned into two sets V1 = {i|(ψ2)i < 0} and V2 = {i|(ψ2)i ≥ 0}.
Therefore, two nodes in the same partition according to the Fiedler vector vibrate in
the same direction and ones in different partitions vibrate in the opposite directions,
when we restrict ourselves to the mode μ = 2. Then, (2.13) gives us a plausible
observation that two nodes i and j that are close in terms of the resistance distance
Ωij tend to be in the same partition of the Fiedler vector, whereas ones that are far
tend to be in different partitions.

We can also express the Kirchhoff index defined by (2.3) in terms of the node
displacements as

Kf = n

n∑

i=1

(Δxi)
2 = n2(Δx)2, (2.14)

where the bar on the right-hand side denotes the average over the nodes. Equa-
tion (2.14) tells us that the Kirchhoff index of a molecular graph is proportional to
the sum of the squared atomic displacements due to molecular vibrations. Since the
Kirchhoff and Wiener indices are known to coincide for acyclic networks, i.e. trees,
we also have

W(T ) = n

n∑

i=1

(Δxi)
2 = n2(Δx)2. (2.15)

We now consider the average potential energy in (2.12). For this purpose, let us
calculate the quantity

Ri =
n∑

j=1

Ωij , (2.16)

the sum of all resistance distances from atom i to any atoms in the molecule. By
combining expression (2.1) with the general fact

∑n
j=1(L

+)ij = 0, we have

Ri = n
(
L+)

ii
+ Tr L+ = n(Δxi)

2 + n(Δx)2 = n(Δxi)
2 + Kf

n
. (2.17)

This shows that (Δxi)
2 and Ri are linearly related for all nodes of a given network.

Using then (2.13), we also have

Ωij = Ri + Rj

n
− 2

Kf

n2
− 2〈xixj 〉. (2.18)

The average potential energy is then given by

〈
V (x)

〉 = 1

2n

n∑

i=1

kiRi − 1

2n

∑

i,j∈E

(Ri + Rj − nΩij ). (2.19)

The first term on the right-hand side of (2.19) was first introduced by Estrada et al.
[16] as a topological index for trees obtained from the quadratic form 〈v|D|u〉, where
v is a vector of node degrees, D is the distance matrix and u is a vector of ones of
length equal to the number of nodes in the graph.
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2.6 Node Displacement and Information Centrality

In the present section, we explore the relation between the node displacement and
the information centrality (2.4). Let us first prove that the inverse of B = L+J exists
and is given by

B−1 = L+ + 1

n2
J. (2.20)

Let ψμ denote the μth eigenvector of the graph Laplacian L, which has the spectrum

0 = λ1 < λ2 ≤ · · · ≤ λn for a connected network. Note here that ψ1 = 1√
n

1. For
μ �= 1, we have

Bψμ = Lψμ + Jψμ = Lψμ = λμψμ (2.21)

because

(Jψμ)j =
n∑

i=1

(ψμ)i = √
nψ1 · ψμ = 0 for μ �= 1.

For μ = 1, we have

Bψ1 = Lψ1 + Jψ1 = nψ1. (2.22)

The above means that the eigenvalues of the matrix B are n,λ2, λ3, . . . , λn, which
are all positive. The matrix B is thereby invertible. Indeed, we can confirm (2.20) as

(L + J)

(
L+ + 1

n2
J
)

= I − 1

n
J + nJ

n2
= I, (2.23)

because LL+ = L+L = I − 1
n

J, LJ = JL = L+J = JL+ = 0, and J2 = nJ. This
proves that the matrix in (2.20) is the inverse of B.

Equation (2.20) then transforms (2.5) into the form

I−1
ij = (

B−1)
ii

+ (
B−1)

jj
− 2

(
B−1)

ij
= (

L+)
ii

+ (
L+)

jj
− 2

(
L+)

ij
= Ωij .

(2.24)

Therefore, the information centrality (2.4) is now given by

IC(i) =
(

1

n

∑

j

1

Iij

)−1

=
(

1

n

∑

j

Ωij

)−1

= n

Ri

= (
(Δxi)

2 + (Δx)2
)−1

.

(2.25)

2.7 Node Displacement as a Measure of Node Vulnerability

Most of the studies on vulnerability of complex networks consider how resilient
the whole network is to random failures and intentional attacks. In these studies,
it is assumed that we can attack any node by simply removing it from the graph.
The primary removal of these nodes can give rise to the secondary disconnection of
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other nodes from the main connected component of the network. The most resilient
network is the one that, after many removals, still keeps the functioning size of the
main connected component.

Here we are interested in the vulnerability of a node rather than the vulnerability
of the whole network to targeted attacks. Intuitively, a node is highly vulnerable if
there are many other nodes whose individual removal disconnects the node in ques-
tion from the main connected component of the network. The information centrality
IC(i) can be an index of the node vulnerability; we may be able to say that a node
i with a larger information centrality is less vulnerable. The resistance distance can
provide an equivalent index; as was shown in the previous section, the quantity Ri is
inversely proportional to the information centrality. Hereafter, we will suggest that
the node displacement Δxi can be another index of the vulnerability and actually
has a better resolution than the information centrality.

Let us first explain in terms of the Fiedler vector why the node displacement
can measure the node vulnerability. Recall that we have ordered the eigenvalues
of the Laplacian as 0 = λ1 < λ2 ≤ · · · ≤ λn. The eigenvector of the second mode
(the first non-zero mode) is the Fiedler vector [17]. Let us consider the particular
case λ2 < λ3. Then (2.11) implies that the term (ψ2)

2
i /λ2 of the Fiedler vector has

the largest contribution to Δxi . Among the nodes, a node with (ψ2)i close to zero
does not strongly belong to either of the two partitions V1 and V2 defined by the
Fiedler vector. Such nodes are located in between the partitions; in other words,
they tend to have ties with many other nodes and hence may be less vulnerable to
external stresses. Then a small value of (ψ2)

2
i /λ2 can indeed indicate little node

vulnerability.
In the seminal paper by Albert, Jeong and Barabási [2], they chose the nodes

with the highest degree for their targets of the primary removals. This is based on an
empirical observation that the nodes with the lowest degree are the most vulnerable.
Consider the case where a node i has only one connection, i.e. Ki = 1. Then, we can
isolate it from the network by removing the node to which i is connected. A measure
of the node vulnerability in complex networks should be consistent in some way
with the above observation that low-degree nodes are more vulnerable than high-
degree ones. As we discussed above, the term (ψ2)

2
i /λ2 indeed has such a property.

In fact, the node displacement (2.11) takes account of the higher modes, too. As
the Fiedler vector defines a bipartition of the network, the eigenvectors of higher
modes can define partitions into a larger number of groups. These partitions may
identify the clusters and the nodes in between them in a more appropriate way.
The use of the eigenvectors of higher modes also helps avoiding the problem that
can arise when λ2 = λ3. This degeneracy can happen in square grids and complete
graphs, for example. In this degenerate case, it has been reported that the conver-
gence of partitioning algorithms can be poor.

Let us demonstrate that the node displacement can be indeed a measure of the
node vulnerability in the sense that it tends to give higher vulnerability to low-
degree nodes than to high-degree nodes. For the purpose, we use the trade network
of miscellaneous manufactures of metal (MMM) among 80 countries in 1994. The
data was compiled by de Nooy [8] and the reader is refereed to this work to obtain
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Fig. 2.2 Illustration of the relationship between the node displacement and the node degree for
the trade network of miscellaneous manufactures of metal among 80 countries in 1994

the details of this dataset. We consider here only the undirected and unweighted
version of this network. Here, the nodes represent the countries and a link exists
between two countries if one of them imports MMM from the other.

We show in Fig. 2.2 the relation between the node degree and the node dis-
placement for the above trade network. The node displacement decreases with the
node degree under a power law. Interestingly, the countries with the largest node
displacements are mostly the poorest countries in the network, whereas the richest
countries are among the ones with the smallest node displacements. Choosing the
node displacement as a measure of the node vulnerability, we can say that the poor-
est countries are the most vulnerable to changes in economical situations such as a
financial crisis.

Having said this, we emphasise here that the node degree accounts only for the
nearest neighbours of a node. In other words, the influence of more distant nodes is
not taken into account if we use the node degree as a measure of the node vulnera-
bility. This can be seen in the fact that many networks have several nodes with the
same degree but with different values of the node displacement.

For an illustrative example, let us study two networks of sexual contacts collected
by Lind et al. [26]. One of them is composed solely of heterosexual contacts among
82 people, which was extracted from the Cadham Provincial Laboratory during a
period of six months. The other is formed by sexual contacts (mainly homosexual)
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among 250 individuals collected from an HIV test study in Colorado Springs (USA).
Note that the first network is bipartite but the second one is not. In Fig. 2.3, we
show the correlations between the degree and the displacements for the nodes of
these two networks. We can see that there are many nodes with the same degree that
display a large variability of their node displacements. This demonstrates the fact
that node vulnerability is a different characterisation of node vulnerability than the
one provided by the node degree. In fact, node displacement takes into account a
more global picture of the environment of a node than the node degree.

2.8 Topological Displacements in Protein Residue Networks

We next describe the application of the node displacement to molecular networks.
We can represent proteins as complex networks by using information on their three-
dimensional structures. One example of these representations is the residue network.
The nodes of a spatial residue network correspond to the amino acid residues of
the protein; as the spatial location of the residue, we use the coordinate of its β-
carbon except that we use the α-carbon for glycine. We then determine the links of
the residue network in terms of the spatial distance between the two residues; two
nodes are connected if the spatial locations of the two residues are closer than a
cutoff radius rC [3]. In other words, we define the elements of the adjacency matrix
of the residue network as

Aij =
{

Θ(rC − rij ) for i �= j,

0 for i = j,

where Θ(x > 0) = 1 and Θ(x ≤ 0) = 0. We can thus represent a protein as a graph
G = (V ,E), where V is the set of the amino acid residues and E is the set of the
connections between them. The residue network of the protein with PDB code 1ash,
for example, is shown in Fig. 2.4 [3, 12].

It is then natural to suppose that the node displacement Δxi calculated for a node
of the residue network displays linear correlation with an experimental measure
of how much a residue oscillates or vibrates around its equilibrium position. One
such experimental measure is the B-factor, or the temperature factor provided by
X-ray experiments. It represents the reduction of coherent scattering of X-rays due
to thermal motion of the atoms.

The B-factors are important for the study of protein structures as they contain
valuable information on the dynamical behaviour of proteins. Several methods have
been designed for the prediction of the B-factors [28]. Regions with large B-factors
are known to be flexible and functionally important. Bahar et al. have used the
atomic displacements to describe thermal fluctuations in proteins [4]. Note that we
use here Bahar et al.’s representation of a residue network in the sense that we use
the β-carbons instead of the α-carbon for the spatial locations of the amino acids.

In Fig. 2.5, we show the profiles of the normalised B-factors and the node dis-
placements of the residue networks for the spinach ferredoxin reductase (top) at 1.7
angstroms resolution (1fnc) and for the human uracil-DNA glycosylase (1akz) at
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Fig. 2.3 Illustration of the relationship between the node displacement and the node degree for
two networks of sexual contacts. (Top) A network formed solely by heterosexual contacts. (Bot-
tom) Network of sexual contacts (mainly homosexual) among 250 individuals in Colorado Springs
(USA)
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Fig. 2.4 3D representation of the structure of a protein (left) and the network representation of
physical contacts between amino acids represented by their β-carbons (right)

1.57 angstroms (bottom). In both cases, the experimental profiles of the B-factors
are very well reproduced by the node displacements of the β-carbons in the protein
residue networks. The correlation coefficients between the B-factors and the node
displacements are r = 0.56 and r = 0.65 for the proteins 1fnc and 1akz, respec-
tively. For them, Yuan et al. [37] obtained r = 0.48 and r = 0.72, respectively, by
a statistical method based on support vector regression. In short, the node displace-
ments of a residue network are correlated with the B-factors obtained for the residue
itself by X-ray crystallography in a similar way to other methods currently in use
for this purpose.

2.9 Node Displacements for Temporal Change on Networks

Another interesting application of the node displacement is the analysis of the tem-
poral change of a network. We can compare the node displacements of an evolv-
ing network at different times. For demonstration, here we use a dataset obtained
by Kapferer for the social ties among 39 tailor shops in Zambia [23]. The friend-
ship and socio-emotional relationship among the 39 tailors were under observation
during a period of ten months. The dataset consists of two phases of the network
recorded with an interval of seven months [23]; see http://vlado.fmf.uni-lj.si/pub/
networks/data/Ucinet/UciData.htm.

After the first dataset was collected an abortive strike was reported [23]. After
the collection of the second dataset, a successful strike took place.

We calculated the change in the node displacement between the two phases of
the network. Let Δxi(t) denote the node displacement of the node i at t , where
t = 1,2. We then define the difference ΔΔxi = Δxi(2) − Δxi(1). For comparison,
we also calculated in a similar way the difference ΔIC(i) between the information
centralities of the node i at the two phases.

In order to analyse the differences in the ranking of nodes in terms of ΔΔxi

and ΔIC(i), we use a nonparametric measure of correlation known as the Kendall

http://vlado.fmf.uni-lj.si/pub/networks/data/Ucinet/UciData.htm
http://vlado.fmf.uni-lj.si/pub/networks/data/Ucinet/UciData.htm
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Fig. 2.5 Profiles of the experimental B-factors and the node displacements for the residues of the
spinach ferredoxin reductase, PDB: 1fnc, (top) and for the human uracil-DNA glycosylase, PDB:
1akz, (bottom) represented by their residue networks
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Fig. 2.6 Profiles of the normalised differences of the nodes displacements and the information
centralities of the nodes in the tailor shop network observed at two different times

τ statistic [24]. This statistic represents the difference between the probability that
the two datasets are in the same order and the probability that they are in different
orders. Let pc and pd be the number of the concordant and discordant pairs of the
data points, respectively, such that p = pc +pd . Then the Kendall τ index is defined
as [24]

τ = 2(pc − pd)

p(p − 1)
. (2.26)

The nonparametric correlation between ΔΔxi and ΔIC(i) is τ = −0.56, which
indicates that both indices rank very differently and almost in a completely un-
correlated way. For instance, the ranking of top individuals in terms of ΔΔxi is
as follows: Zakeyo > Chipalo > Adrian > Sign > Enoch > Donald > Meshak >

Seans > Kamwefu > Chipata. On the other hand, the ranking in terms of ΔIC(i)

is as follows: Meshak > Adrian > Zakeyo > Chipalo > Chipata > Kamwefu >

Ibrahim > Mukubwa > Nkoloya > Enoch. In Fig. 2.6, we show the profiles of the
normalised values of ΔΔxi and ΔIC(i) for all individuals in this network.

This striking difference between the information centrality and the node displace-
ment can be traced back to (2.25). It tells us that an increase in the information cen-
trality of a node can have two origins: a decrease in the local node displacement
(Δxi)

2 or a decrease in the global (average) node displacement (Δx)2 (or both).
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More detailed analysis of the two rankings of the nodes tells us that for most nodes,
the increase of the information centrality is caused by the decrease of the global
node displacement, not by the local one. Many tailors had many social ties and were
not very vulnerable in the first place. Their information centrality increased after
the seven months mostly because the number of the links generally increased all
over the network; on the other hand, their local node displacement (the vulnerability
of each tailor) scarcely changed. For tailors such as Zakeyo and Chipalo, however,
their local node displacements decreased greatly after the seven months because
their own degrees increased dramatically. This demonstrates clearly that the node
displacement has a better resolution of the time evolution than the information cen-
trality.

In summary, despite the relation (2.25) between the information centrality and
the node displacement, there is a fundamental difference between them. The infor-
mation centrality can be seen as a composite index containing local information
of a node as well as global topological information of the network, whereas with
the node displacement we can separate it into the local information as (Δxi)

2 and
the global one as (Δx)2. This difference is very relevant when comparing nodes in
different networks.

2.10 Outlook

It is a well known fact that there are several common features between very disparate
complex systems arising in non-related areas of nature, society or technology. When
these systems are represented by complex networks, some of these features are well
documented in the scientific literature [1, 27, 30]. In order to discover these universal
features, we need to carry out cross-comparative analysis of complex systems and
their behaviours by using appropriate mathematical tools and physical concepts.
Here we have introduced the concept of the node displacement as a measure of
vulnerability of each node in a network. It is defined in terms of the amplitude
of vibration caused by thermal fluctuation of a heat bath in which the network is
immersed. This physical analogy simulates the situation in which the network in
question is under a level of external stress. It is interesting that this fundamental
physical concept is related to graph-theoretic invariants previously developed and
used in very different scientific disciplines like Chemistry and Social Sciences. In
this sense, we have seen in practise the unifying nature of physico-mathematical
concepts across the boundaries of many disciplines. Then, we hope that this work
contributes to the interdisciplinary search of more universal properties of complex
systems that permit a better understanding of their structure and dynamics.
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