Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Collective atomic recoil lasing including friction and diffusion effects

Robb, G.R.M. and Piovella, N. and Ferraro, A. and Bonifacio, R. and Courteille, P.W. and Zimmermann, C. (2004) Collective atomic recoil lasing including friction and diffusion effects. Physical Review A, 69 (4). 041403-1. ISSN 1094-1622

[img]
Preview
PDF (strathprints002981.pdf)
strathprints002981.pdf

Download (199kB) | Preview

Abstract

We extend the collective atomic recoil lasing (CARL) model including the effects of friction and diffusion forces acting on the atoms due to the presence of optical molasses fields. The results from this model are consistent with those from a recent experiment by Kruse et al. [ Phys. Rev. Lett. 91, 183601 (2003) ]. In particular, we obtain a threshold condition above which collective backscattering occurs. Using a nonlinear analysis we show that the backscattered field and the bunching evolve to a steady state, in contrast to the nonstationary behavior of the standard CARL model. For a proper choice of the parameters, this steady state can be superfluorescent.