Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Self-synchronization and dissipation-induced threshold in collective atomic recoil lasing

von Cube, C. and Kruse, D. and Zimmermann, C. and Courteille, P.W. and Robb, G.R.M. and Piovella, N. and Bonifacio, R. (2004) Self-synchronization and dissipation-induced threshold in collective atomic recoil lasing. Physical Review Letters, 93 (8). 083601-1. ISSN 0031-9007

[img]
Preview
PDF (strathprints002978.pdf)
strathprints002978.pdf

Download (186kB) | Preview

Abstract

Networks of globally coupled oscillators exhibit phase transitions from incoherent to coherent states. Atoms interacting with the counterpropagating modes of a unidirectionally pumped high-finesse ring cavity form such a globally coupled network. The coupling mechanism is provided by collective atomic recoil lasing, i.e., cooperative Bragg scattering of laser light at an atomic density grating, which is self-induced by the laser light. Under the rule of an additional friction force, the atomic ensemble is expected to undergo a phase transition to a state of synchronized atomic motion. We present the experimental investigation of this phase transition by studying the threshold behavior of this lasing process.