Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Self-synchronization and dissipation-induced threshold in collective atomic recoil lasing

von Cube, C. and Kruse, D. and Zimmermann, C. and Courteille, P.W. and Robb, G.R.M. and Piovella, N. and Bonifacio, R. (2004) Self-synchronization and dissipation-induced threshold in collective atomic recoil lasing. Physical Review Letters, 93 (8). 083601-1. ISSN 0031-9007

[img]
Preview
PDF (strathprints002978.pdf)
strathprints002978.pdf - Accepted Author Manuscript

Download (186kB) | Preview

Abstract

Networks of globally coupled oscillators exhibit phase transitions from incoherent to coherent states. Atoms interacting with the counterpropagating modes of a unidirectionally pumped high-finesse ring cavity form such a globally coupled network. The coupling mechanism is provided by collective atomic recoil lasing, i.e., cooperative Bragg scattering of laser light at an atomic density grating, which is self-induced by the laser light. Under the rule of an additional friction force, the atomic ensemble is expected to undergo a phase transition to a state of synchronized atomic motion. We present the experimental investigation of this phase transition by studying the threshold behavior of this lasing process.