Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Seamless pressure-deficient water distribution system model

Tanyimboh, Tiku and Templeman, AB (2010) Seamless pressure-deficient water distribution system model. Proceedings of the ICE - Water Management, 163 (8). pp. 389-396. ISSN 1741-7589

[img]
Preview
Text (Tanyimboh-Templeman-ICE-WM-2011-Seamless-pressure-deficient-water-distribution)
Tanyimboh_Templeman_ICE_WM_2011_Seamless_pressure_deficient_water_distribution.pdf - Final Published Version

Download (280kB) | Preview

Abstract

Pressure-deficient conditions are a common occurrence in water distribution systems. These situations require accurate modelling for timely decision making. However, the conventional demand-driven analysis approach to network modelling is unsuitable for operating conditions with insufficient pressure. Increasing emphasis is being placed on the need for water companies to satisfy stringent performance standards for the continuous supply of water to consumers and it is those pressure-deficient operating conditions which are critical in determining whether or not adequate supplies can be provided. It is therefore very unfortunate that the demand-driven analysis method becomes invalid for use in precisely those critical conditions. The aim of this paper is to present a new pressure-dependent demand function to help improve the simulation of pressure-deficient conditions. The proposed function has better computational properties than those in the literature and has been incorporated successfully in the governing equations for water distribution networks. In particular, the proposed function and its derivative do not have the discontinuities that often cause convergence difficulties in the solution of the constitutive equations. A robust Newton–Raphson algorithm was developed to model water distribution systems under both normal and pressure-deficient conditions in a seamless way. Examples which demonstrate the methodology are included.