Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Enhancement of tributyltin degradation under natural light by N-doped TiO2 photocatalyst

Bangkedphol, Sornnarin and Keenan, Helen and Davidson, Christine and Sakultantimetha, Arthit and Sirisaksoontorn, W and Songsasen, A. (2010) Enhancement of tributyltin degradation under natural light by N-doped TiO2 photocatalyst. Journal of Hazardous Materials, 184 (1-3). pp. 533-537. ISSN 0304-3894

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Photo-degradation of tributyltin (TBT) has been enhanced by TiO(2) nanoparticles doped with nitrogen (N-doped TiO(2)). The N-doped catalyst was prepared by a sol-gel reaction of titanium (IV) tetraisopropoxide with 25% ammonia solution and calcined at various temperatures from 300 to 600°C. X-ray diffraction results showed that N-doped TiO(2) remained amorphous at 300°C. At 400°C the anatase phase occurred then transformed to the rutile phase at 600°C. The crystallite size calculated from Scherrer's equation was in the range of 16-51 nm which depended on the calcination temperature. N-doped TiO(2) calcined at 400°C which contained 0.054% nitrogen, demonstrated the highest photocatalytic degradation of TBT at 28% in 3h under natural light when compared with undoped TiO(2) and commercial photocatalyst, P25-TiO(2) which gave 14.8 and 18% conversion, respectively.