Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Modelling time-dependent behaviour of Murro test embankment

Karstunen, Minna and Yin, Zhen-Yu (2010) Modelling time-dependent behaviour of Murro test embankment. Geotechnique, 60 (10). pp. 735-749. ISSN 0016-8505

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper investigates the time-dependent behaviour of Murro test embankment in Finland. The embankment was built in 1993 on a soft natural clay deposit, which exhibits large strain anisotropy, destructuration and viscosity. The study is based on extensive experimental data from triaxial and oedometer tests on intact and reconstituted soil samples which shed light on the influence of time on mechanical properties, including testing designed for studying soil anisotropy and destructuration. The interpretation of the results is done in the framework of a recently developed elasto-viscoplastic model EVP-SCLAY1S, which is used to simulate the soft soil deposit coupled with Biot's consolidation theory. The determination of model parameters from the test results demonstrates that the model can be relatively easily used for practical applications. Using these parameters, two-dimensional finite-element analyses have been made as large deformation analysis. The comparisons between calculations and measurements demonstrate that the proposed model can be satisfactorily used to describe the time-dependent behaviour of the embankment on structured clay.