Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Evaluation of the influence of scaling function on modelling time-dependent behaviour of natural clays

Yin, Zhen-Yu and Karstunen, Minna and Hicher, Pierre-Yves (2010) Evaluation of the influence of scaling function on modelling time-dependent behaviour of natural clays. Soils and foundations, 50 (2). pp. 203-214. ISSN 0038-0806

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In this paper, we study the influence of the scaling functions in Perzyna's type elasto-viscoplastic models for predicting time-dependent behaviour of natural clays. The constitutive models were developed based on the overstress theory with different scaling functions and on the elastoplastic model S-CLAY1S which accounts for induced anisotropy and gradual degradation of apparent soil bonds. Laboratory tests were simulated on natural clays under one-dimensional and triaxial conditions to evaluate the scaling function influence in the modelling of the strain-rate effect on soil strength and creep effect. The influence of scaling functions on modelling the time-dependent behaviour under pressuremeter condition was also numerically examined. This test is treated as an example of a boundary value problem, which also allows us to see if this in situ testing is capable of deriving the parameters controlling the time-dependent behaviour.