Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Computation of the analysis error covariance in variational data assimilation problems with nonlinear dynamics

Gejadze, I.Yu and Copeland, G.J.M and Le Dimet, F.X. and Shutyaev, V. (2011) Computation of the analysis error covariance in variational data assimilation problems with nonlinear dynamics. Journal of Computational Physics, 230 (22). pp. 7923-7943. ISSN 0021-9991

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The problem of variational data assimilation for a nonlinear evolution model is formulated as an optimal control problem to find the initial condition function. The data contain errors (observation and background errors), hence there will be errors in the optimal solution. For mildly nonlinear dynamics, the covariance matrix of the optimal solution error can often be approximated by the inverse Hessian of the cost functional. Here we focus on highly nonlinear dynamics, in which case this approximation may not be valid. The equation relating the optimal solution error and the errors of the input data is used to construct an approximation of the optimal solution error covariance. Two new methods for computing this covariance are presented: the fully nonlinear ensemble method with sampling error compensation and the ‘effective inverse Hessian’ method. The second method relies on the efficient computation of the inverse Hessian by the quasi-Newton BFGS method with preconditioning. Numerical examples are presented for the model governed by Burgers equation with a nonlinear viscous term.