Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Laser-driven fast electron collimation in targets with resistivity boundary

Ramakrishna, B. and Kar, S. and Robinson, A. P. L. and Adams, D. J. and Markey, K. and Quinn, M. N. and Yuan, X. H. and McKenna, P. and Lancaster, K. L. and Green, J. S. and Scott, R. H. H. and Norreys, P. A. and Schreiber, J. and Zepf, M. (2010) Laser-driven fast electron collimation in targets with resistivity boundary. Physical Review Letters, 105 (13). ISSN 0031-9007

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We demonstrate experimentally that the relativistic electron flow in a dense plasma can be efficiently confined and guided in targets exhibiting a high-resistivity-core-low-resistivity-cladding structure analogous to optical waveguides. The relativistic electron beam is shown to be confined to an area of the order of the core diameter (50 mu m), which has the potential to substantially enhance the coupling efficiency of electrons to the compressed fusion fuel in the Fast Ignitor fusion in full-scale fusion experiments.