Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

New developments in energy transfer and transport studies in relativistic laser-plasma interactions

Norreys, P. A. and Green, J. S. and Lancaster, K. L. and Robinson, A. P. L. and Scott, R. H. H. and Perez, F. and Schlenvoight, H-P and Baton, S. and Hulin, S. and Vauzour, B. and Santos, J. J. and Adams, D. J. and Markey, K. and Ramakrishna, B. and Zepf, M. and Quinn, M. N. and Yuan, X. H. and McKenna, P. and Schreiber, J. and Davies, J. R. and Higginson, D. P. and Beg, F. N. and Chen, C. and Ma, T. and Patel, P. (2010) New developments in energy transfer and transport studies in relativistic laser-plasma interactions. Plasma Physics and Controlled Fusion, 52 (12). -. ISSN 0741-3335

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Two critical issues related to the success of fast ignition inertial fusion have been vigorously investigated in a co-ordinated campaign in the European Union and the United States. These are the divergence of the fast electron beam generated in intense, PW laser-plasma interactions and the fast electron energy transport with the use of high intensity contrast ratio laser pulses. Proof is presented that resistivity gradient-induced magnetic fields can guide fast electrons over significant distances in (initially) cold metallic targets. Comparison of experiments undertaken in both France and the United States suggests that an important factor in obtaining efficient coupling into dense plasma is the irradiation with high intensity contrast ratio laser pulses, rather than the colour of the laser pulse itself.