Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

A stochastic differential equation SIS epidemic model

Gray, Alison and Greenhalgh, David and Hu, L. and Mao, Xuerong and Pan, Jiafeng (2011) A stochastic differential equation SIS epidemic model. SIAM Journal on Applied Mathematics, 71 (3). pp. 876-902.

[img] PDF
SDE_SIS_SIAP_Revision.pdf - Draft Version

Download (5MB)

Abstract

In this paper we extend the classical susceptible-infected-susceptible epidemic model from a deterministic framework to a stochastic one and formulate it as a stochastic differential equation (SDE) for the number of infectious individuals $I(t)$. We then prove that this SDE has a unique global positive solution $I(t)$ and establish conditions for extinction and persistence of $I(t)$. We discuss perturbation by stochastic noise. In the case of persistence we show the existence of a stationary distribution and derive expressions for its mean and variance. The results are illustrated by computer simulations, including two examples based on real-life diseases.