Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Stable droplets and growth laws close to the modulational instability of a domain wall

Gomila, Damià and Colet, Pere and Oppo, Gian-Luca and San Miguel, Maxi (2001) Stable droplets and growth laws close to the modulational instability of a domain wall. Physical Review Letters, 87 (19). 194101/1-194101/4. ISSN 0031-9007

[img]
Preview
PDF (strathprints002955.pdf)
strathprints002955.pdf

Download (176kB) | Preview

Abstract

We consider the curvature driven dynamics of a domain wall separating two equivalent states in systems displaying a modulational instability of a flat front. An amplitude equation for the dynamics of the curvature close to the bifurcation point from growing to shrinking circular droplets is derived. We predict the existence of stable droplets with a radius R that diverges at the bifurcation point, where a curvature driven growth law R(t)≈t1/4 is obtained. Our general analytical predictions, which are valid for a wide variety of systems including models of nonlinear optical cavities and reaction-diffusion systems, are illustrated in the parametrically driven complex Ginzburg-Landau equation.